

User Guide

http://www.jproductivity.com

jj j PP P
rr r oo o

dd d
uu u
cc c
tt t ii i
vv v
ii i tt t
yy y
 LL L

LL L
CC C

Protection!
L i c e n s i n g T o o l k i t

D e v e l o p e r s G u i d e

Protect your investments with Protection!

t m

v 5

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

2

Revision
516 - 2/10/21

Notice of Copyright

Published by jProductivity, LLC

Copyright ©2003-2021

All rights reserved.

Registered Trademarks and Proprietary Names

Product names mentioned in this document may be trademarks or registered

trademarks of jProductivity, LLC or other hardware, software, or service providers and

are used herein for identification purposes only.

Applicability

This document applies to Protection! v5 software.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

3

Contents

Contents ... 3
1. Protection! Licensing Toolkit Concepts ... 6

1.1 Key Concepts ... 6
1.1.1 License File .. 6
1.1.2 Protection! Control Center ... 6
1.1.3 Secret Storage ... 6

1.2 Protection! Process .. 7
1.2.1 Reading a License .. 7
1.2.2 Checking License .. 7
1.2.3 Checking Integrity .. 8
1.2.4 Conclusion ... 8

2. Adding Protection! Support to the Java Applications .. 9
2.1 Protection! Initialization ... 9

2.1.1 Source Code .. 9
2.1.2 Launcher ... 9

2.2 Handling Protection! Events .. 10
2.3 Calling License Check .. 10

3. Adding Protection! Support to Native Applications ... 12
3.1 Launching Protection Support Process .. 13

3.1.1 Tweaking Protection Support Appearance .. 13
3.1.2 Exiting Protection Support Application ... 14

3.2 Catching Protection Support Error Output ... 15
3.3 Catching Protection Support Output ... 15
3.4 Handling Protection Support Events ... 16
3.5 Transferring Commands to Protection Support .. 17

4. License Types ... 18
5. License Reading .. 20

5.1 License Reader ... 20
5.2 Locating License ... 20
5.3 Reading and Decoding License .. 21

FIPS Support.. 22
5.4 Listening License Reader Events.. 22
5.5 Resolving License Reader Issues ... 23
5.6 Upgrading License ... 24

6. License Checking .. 26
6.1 License Host ... 26
6.2 Analyzing License Checking Results ... 27
6.3 Listening License Host Events ... 28
6.4 License Agreement Acceptance ... 29
6.5 Working with Secret Storages ... 29

6.5.1 FileSecretStorage Implementation .. 30
6.5.2 PreferencesSecretStorage Implementation .. 30
6.5.3 JarFileSecretStorage Implementation .. 31

6.6 Resolving License Host Issues ... 31
6.7 License Expiration ... 33

6.7.1 Date Based License Expiration ... 33
6.7.2 Usage Based License Expiration ... 34

6.8 User Licensing Models .. 35
6.8.1 Named User Licensing Model ... 36

Lock Attributes ... 36
Activation Keys Generation .. 37

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

4

Grace Period .. 38
License Deactivation ... 39

6.8.2 Floating User Licensing Model .. 39
Handling Number of Copies Violation Event .. 40
Check Host Policy ... 40
Releasing Network Check Resources ... 40

6.8.3 Floating and Named User Licensing Models - Licensing Server 40
Adding Licensing Server Support .. 41
Listening License Lock Expired Event... 42
Listening for License Lock Revoked Event .. 42
Grace Period .. 43
Check Host Policy ... 43
Checking-out Licenses for Offline Use .. 43
Releasing Licensing Server Resources ... 43
Main/Supplemental License Model... 44
Handling License Updates or Change Users Allocation.................................... 44
Checking the Status of Licensing Server .. 45

6.9 License Kind ... 46
7. Working with the Licensing Server .. 48

7.1 Registering Licensing Server Connection .. 48
7.2 Using the LicensingServiceSupport .. 48
7.3 Direct Use of Licensing Service ... 48

7.3.1 Getting Licensing Service .. 49
7.3.2 Using Licensing Services ... 49
7.3.3 Releasing Licensing Service ... 51

8. Integrity Verification ... 52
8.1 Source Runtime Configuration .. 52
8.2 Resource Runtime Configuration ... 53
8.3 File Runtime Configuration ... 53

9. Licensing Using Protection! Backend .. 54
9.1 Registering the LicensingFacade Implementation .. 54
9.2 Getting the LicensingFacade ... 55
9.3 Using the LicensingFacade .. 55
9.4 Using the LicensingFacade to Implement Licensing of the Web Applications 56

10. Deploying Protected Applications ... 58
10.1 Required Redistributables ... 58
10.2 Redistributables to allow support for “Named User” licensing model that locks the

license to CPU or motherboard ID's. (Optional) .. 58
10.3 Redistributables to Work with Protection! Web Services Application (Optional) 59
10.4 Redistributables to Allow Support for Named User Licensing Model (Deprecated) . 59

11. Protection! Backend .. 60
11.1 Working with Products Storage ... 60
11.2 Encoding and Writing Licenses .. 60

11.2.1 Licensing Protection! Backend API .. 60
11.2.2 Using License Writer ... 61

11.3 Validating Deactivation Result ... 63
11.4 Working with Serial Numbers .. 63

11.4.1 Serial Numbers Generation .. 63
11.4.2 Serial Numbers Parsing ... 64

11.5 Orders Parsing .. 64
11.5.1 Single Order Parsing ... 65
11.5.2 Bulk Orders Parsing .. 65
11.5.3 Using Generic Order Format ... 65

11.6 Working with Protection! WS Application .. 66
11.6.1 Configuring Protection! WS Application .. 67

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

5

11.6.2 Deploying Protection! Web Services Application to Compatible Container 67
11.6.3 Extending Protection! Web Services Application .. 68

Writing Extension Plug-in ... 68
login(…) Method Implementation .. 69
checkGetLicenseEnabled(…) Method Implementation..................................... 69
checkActivateLicenseEnabled (…) Method Implementation 70
checkDeactivateLicenseEnabled (…) Method Implementation 70
onGetLicense() Method Implementation .. 70
onActivateLicense(…) Method Implementation .. 71
deliver() Method Implementation .. 72
Extending LicensingFacadeExtensionSupport .. 73
Logging Licensing Activities .. 73
Deploying Plug-in Implementation .. 73

11.7 Deploying Protection! Backend Applications .. 74
11.7.1 Protection! Library Redistributables ... 74
11.7.2 Redistributables to Allow Support for License Delivery via E-mail (Optional) . 75

12. Frequently Asked Questions ... 76
General questions ... 76
Protection! Back-end and Web Services ... 86
License specific questions .. 87
Integrity Check Support .. 92

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

6

Chapter 1

1. Protection! Licensing Toolkit Concepts

The following topics outline major concepts of Protection! Licensing Toolkit:

1.1 Key Concepts

Protection! is a Licensing Toolkit. The key concept of Protection! is to verify the presence

of a valid license required by the product as well as to prevent license tampering.

Protection! Licensing Toolkit is a set of Java classes that need to be embedded into the
custom application in order to allow only authorized use of the application. Authorized

use of a custom application is based on the supplied license. Protection! Licensing

Toolkit provides application developers with full control over the license checking and

validation mechanism. Protection! classes provide all of the necessary functionality to
allow license discovery, license reading and validation, as well as several other utility

functions such as the ability to implement and further integrity check for desired

classes/resources in order to avoid malicious application patching.

1.1.1 License File

License File represents a way to transfer the appropriate rights to the end-user, allowing

the end-user to use the protected application. Protection! License File is implemented as
an encoded file that contains information about the product, version, license type, etc.

Protection! License File can either be bundled with the application and loaded as a

resource, or be located anywhere in the file system. The license File, generated by the

Protection! Control Center, is a strongly encrypted file ensuring that virtually no one can

break its protection by the simple re-generation of the license file. To meet this goal, a
non-symmetric cipher algorithm is used where keys used to encrypt and decrypt the

license are different. The key size is 512 bits, which provides enough encryption

strength while keeping license file size in acceptable bounds. The Encryption key pair is

unique to each particular product, thereby eliminating the ability to utilize the license
file generated for a different product. This approach makes it impossible to restore the

private key by having knowledge of the public key and vice versa.

1.1.2 Protection! Control Center

Protection! Control Center offers a central location for Product Management, License

Generation, License Maintenance, and Creation of the corresponding Code Snippets as

ready-to-use Java implementation files, License deployment, and Protection! Web
Services application configuration. Protection! Control Center allows the developer to

manage an unlimited number of products, product’s editions and product’s feature sets

per each individual product.

1.1.3 Secret Storage

Secret Storage provides a way to persistently and secretly store various and important

information about the application. Secret Storage can also be used to store various
actions performed by the end-user. The following information is currently stored in

Secret Storage:

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

7

 First encountered expiration time (to prevent unauthorized use by getting a newer

evaluation licenses).

 A flag that specifies whether the user has accepted the terms of the license

agreement (this could be used to suppress showing the license agreement dialog at

application startup).

Protection! provides simple file and Preferences API based secret storage

implementations and with the help of Protection! Control Center the developer is able to

generate the appropriate Code Snippets to utilize secret storages. Because Protection! is
a licensing framework application developers are free to provide their own

implementation of Secret Storage e.g. Windows Registry based. Protection! supports

working with several Secret Storage files at the same time in order to provide greater

redundancy to protect the data.

1.2 Protection! Process

Protection! Process consists of the following steps:

1.2.1 Reading a License

Protection!’s license support subsystem is responsible for locating, reading and

validating the license, providing access to the license file and firing notifications during

the license load process (e.g. when the license is valid, missing or invalid).

License reading is performed using the following simple steps:
1. Locating the License. If it is determined that the required license is missing, the

developer can call the Resolver mechanism to attempt to resolve the missing license

issue. If the Resolver does provide a valid license, then the process of locating the

license is repeated.
2. Reading and Decoding the License. If the license is corrupted, the developer can call

the Resolver mechanism to attempt to fix the corrupted license issue. If the Resolver

does provide a valid license, then the process of license Reading and Decoding is

repeated from the start.

1.2.2 Checking License

The following steps are only performed if the license was discovered and read
successfully:

1. Verify that the license was issued for the correct product. The default

implementation assumes that the license is valid, only if the product’s identifier is

equal to the product’s identifier contained within the license file.

2. Check that the product’s major and minor versions contained within the license file
are valid for the product. The default implementation assumes that the license is

valid if information about the product’s major version, which is stored within the

license, is equal to the actual product’s major version. Minor version is ignored

within the default implementation.
3. Check the product’s features embedded within the license. The default

implementation always assumes that any feature set is valid. However, application

developers are always able to add their own checking and verifications.

4. Check that the license has not expired. If the license is an evaluation license,
additional checking is performed to verify that the license did not expire earlier using

the value obtained from the Secret Storage. If it is determined that the license is

expired, the developer can call the Resolver mechanism in order to attempt to

resolve an expired license issue. If the Resolver does provide a valid license, then
the process is repeated starting from the step of Reading a License.

5. Check that the license is activated. If the license is not activated, the developer can

call the Resolver mechanism in order to try to activate the license. If the Resolver

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

8

successfully activates the license, then the process is repeated starting from the step

of Reading a License.

6. Check that the user has accepted the terms of the License Agreement.

7. Check the number of running copies over the network (Professional Edition only).

8. Save the earliest expiration time for the evaluation license and the License
Agreement acceptance flag to the Secret Storage.

During license checking and validation, Protection! Licensing Toolkit provides detailed

feedback about the process status and its results back to the application. This feedback
is provided by firing an appropriate set of events. It is the responsibility of the

application developer to decide which action should be taken in response to a particular

Protection! event. The default implementation assumes no actions for any such events

provided by Protection! Licensing Toolkit. For example: when it is determined by
Protection! that the license file is invalid, the application can either exit or the

application could disable all or part of its functionality. Such a decision is the

responsibility of the application developer (there is no default behavior provided by

Protection! Licensing Toolkit). In addition to the event based analysis/action, it is always

possible to get the current status of the license at any time during an application’s run
to see whether the license is valid.

While the default implementation of the license checking mechanism provides

functionality that would be enough for the majority of the applications, developers can
easily override/extend any license reading/validating steps stated above to get the

desired results.

1.2.3 Checking Integrity

The Integrity verification subsystem allows for checking and validation that the

designated key classes, resources or files of the product have not been changed. This

type of check is done by comparing the digest of those classes/resources with the
original value stored somewhere in the product code, resources or files. The Integrity

subsystem significantly increases the time and effort needed to diagnose and locate

specific parts of the protection system in order to attempt to break it.

1.2.4 Conclusion

In addition to the core Protection! responsibilities such as license discovery, license

reading and validation, Protection! Licensing Toolkit provides developers with various

helper classes and with default implementations of the listeners. Default implementation
of the listeners provides users with feedback information regarding the Protection!

license checking process and its results. Such helper classes and listeners allow the

following functionalities:

 Ability to pop-up a message window and/or Licensing Assistant Wizard if the license
file was not found, corrupted, invalid or expired

 Ability to prompt the end-user to accept the terms of the license agreement using

the License Acceptance dialog

 Ability to show the About Dialog with license information, application name and
version, feedback information, a hyperlink to the developer’s website, License type,

Issue and Expiration Dates, License Number, Licensee information and a hyperlink to

view the license agreement.

 Ability to perform an integrity check for desired classes/resources in order to avoid
malicious application patching.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

9

Chapter 2

2. Adding Protection! Support to the Java Applications

To add Protection! support to Java applications the following major steps should be
completed:

1. Creation and initialization of Protection! frameworks and its objects.

2. Providing code for handling Protection! events and license checking results.

3. Adding appropriate calls to the license and integrity checking methods.

2.1 Protection! Initialization

Protection! framework and its objects should be properly created and initialized before

first use. Such initialization can be done either in the source code or via loading

configuration data from the previously generated product’s Launcher resource.

2.1.1 Source Code

Initialization via source code is done by implementing all required API calls into the

application’s source code. Initial implementation of the support class (e.g.

DemoCalcProtectionSupport) can be based on one of the code snippets provided by

the Protection! Control Center; any further changes can be done manually. The following
types of generated code snippets are available:

a) GUI – provides a template for implementation that can be used to add Protection!

support for the GUI-based applications. This implementation includes various

Assistants to simplify licensing tasks, the License About Dialog, standard error
messages etc.

b) Headless - provides a template for implementation that can be used to add

Protection! support for the server or console applications.

An instance of support class can easily be created using one of its constructors (for the
code snippets based implementation):

DemoCalcProtectionSupport support = new DemoCalcProtectionSupport(owner);

2.1.2 Launcher

Initialization via generated product’s Launcher is done by loading configuration data

(Launcher) from the application resource or a file at the runtime. Initial implementation
can be based on one of the code snippets provided by the Protection! Control Center;

any further changes can be done manually. The following types of generated code

snippets are available:

c) GUI (Launcher) – provides a template for implementation that can be used to add
Protection! support for the GUI-based applications. This implementation includes

various Assistants to simplify licensing tasks, the License About Dialog, standard

error messages etc.

d) Headless (Launcher) - provides a template for implementation which can be used to
add Protection! support for the server or console applications.

The Launcher resource can be generated using the Protection! Control Center | Products

Screen via the Build | Build Launcher menu item or using the Protection Builder Utility.
The Generated Launcher must be bundled and distributed with the application either as

an application resource or as a file.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

10

An instance of support class can be created using one of its constructors and then

initialized by providing the name of the Launcher resource (for the code snippets based

implementation):

DemoCalcProtectionSupport support = new DemoCalcProtectionSupport(owner);

support.init(this.getClass(), "DemoCalc.launcher");

Using Launcher makes it easy to change and tune the configuration as no source code

modifications are required.

T
ip

 In some cases (SWT or console applications) it is not possible to provide a valid owner

because there is no frame instance in the components root. In such cases it is

recommended to use a dev.gui.FakeOwnerFrame instance as owner.

2.2 Handling Protection! Events

A very important part of Protection! initialization is the listening events which are fired
during license locating, reading and checking. You should handle such events to enable,

disable or fine tune parts of your application’s functionality:

DefaultLicenseAdapter licenseListener = new DefaultLicenseAdapter(fOwner){

 public void featureChecked(LicenseHost aSource, License aLicense, String

 aFeature, boolean isEnabled) {

 if (aFeature.equals("1")) { // Basic

 ((DemoCalc) fOwner).setBasicFunctionalityEnabled(isEnabled);

 } else if (aFeature.equals("2")) { // Scientific

 ((DemoCalc) fOwner).setScientificFunctionalityEnabled(isEnabled);

 }

 }

}

Please check the Listening License Reader Events and the Listening License Host Events

topics for more information.

2.3 Calling License Check

After all initialization is done the call(s) of checkLicense() method should be added

somewhere in the application code e.g. during application startup. Optionally the

checkLicense() calls can be scheduled according to some sequence of events or time

frequency (e.g. each hour) to ensure that the license is still OK.

Results of the license check can be used to limit some of the application functionality or

can be a reason for application exit (depending on the nature of the application and
business needs).

if (! support.checkLicense()) {

 System.out.println(“License is not OK”);

N
o
te

 It is strongly recommended to provide an owner (if any) attribute to constructors of

GUI implementations. This value will be used as owner for all of the dialogs shown
during the licensing process. If owner attribute is not specified it may cause incorrect

handling of windows Z-order while user switches between different applications.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

11

 System.exit(-1);

}

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

12

Chapter 3

3. Adding Protection! Support to Native Applications

Though Protection! is primary intended to add protection and licensing support to Java

applications, Protection! can be easily integrated with native e.g. C/C++ applications as
well.

To allow licensing of native applications Protection! Developer includes a special Java

application – Protection Support. This application is represented by a single application

archive - bin/ProtectionSupport.jar and dependant libraries located in the /lib

folder. When Protection Support application launched it:

1. Locates a special Protection Support Launcher and loads the entire licensing
configuration from it.

2. Starts license reading and checking procedure.

3. Prints all the licensing events to standard output stream in JSON format.

4. Prints all the errors (exceptions) to standard error stream.
5. Either exits right after completion of license check or continue checking of license

periodically.

6. Listens for control commands by reading standard input stream.

T
ip

You can run Protection Support application in console via command line and see its

output to better understand how it is functioning. Use a sample DemoCalc.launcher and

a DemoCalc.key license file located in the ../samples/ folder for learning purposes. For

example:

java –jar ProtectionSupport.jar ../samples/DemoCalc.launcher

To utilize Protection Support in your application:

1. Deploy Protection Support with your application.

2. Deploy JRE with your application or make sure it is present in the system.

3. Generate a Launcher having the “Protection Support Launcher” type and deploy it
with your application.

4. Launch a Protection Support process.

5. Catch Protection Support error output and print or log it, for example.

6. Catch Protection Support standard output to be notified of all licensing events.
7. Decode licensing events from JSON format and handle all the events of interest to

enable, disable or fine tune parts of your application’s functionality according to a

supplied license.

8. Transfer some commands to Protection Support by putting them to its input.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

13

The following topics show how to work with Protection Support application in greater

details using Java language and frameworks for illustrational purpose; implementation

in other languages would be very similar to Java one.

3.1 Launching Protection Support Process

To launch Protection Support application: Java must be invoked with –jar option,

providing a path to Protection Support application archive and path to a Launcher:

public final Process process = Runtime.getRuntime().

 exec("java –jar ProtectionSupport.jar ../samples/DemoCalc.launcher");

If Launcher is password protected – a password must be specified in the command line:

 public final Process process = Runtime.getRuntime().

 exec("java –jar ProtectionSupport.jar ../samples/DemoCalc.launcher

 –password 123456");

By default, Protection Support process will continue running after the first license check;

it will be checking license once a minute. If there is a need to exit Protection Support

right after the first license check – it should be launched with the –check_once option:

public final Process process = Runtime.getRuntime().

 exec("java –jar ProtectionSupport.jar DemoCalc.launcher

 –password 123456

 -check_once");

3.1.1 Tweaking Protection Support Appearance

If Protection Support application is launched with a GUI Launcher it is possible to tweak
some of its appearance properties.

To specify an icon that should be used by all windows, dialogs and message boxes the –

icon option should be used:

public final Process process = Runtime.getRuntime().

 exec("java –jar ProtectionSupport.jar ../samples/DemoCalc.launcher

 -icon ../samples/DemoCalc.png");

By default, Protection Support shows an icon in the System Tray (if supported by your

platform). This icon provides a popup menu with some of the available commands. This
tray icon can be utilized:

N
o
te

To make your implementation more secure:

1. Check digest (SHA-1 or MD5) for ProtectionSupport.jar in your application to

avoid “man in the middle attack”.

2. Check digest (SHA-1 or MD5) for /lib/Protection.jar in your application to

avoid altering core Protection! library.

3. Specify and use strong password for your Launcher to disallow its substitution.

N
o
te

 If you are launching Protection Support application in the GUI mode – it is strongly

recommended to use Java 9 or greater. In earlier versions of Java, dialogs and

messages shown by Protection Support application may not be moved to the

foreground resulting that they can be obscured by other windows.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

14

 During learning process to avoid the need to type commands in the console.

 In your application if you have no time or do not want to add licensing specific

commands to your app. In that case Protection Support’s tray icon will represent a

License Manager for your app to end users.

If there is no need to present Protection Support’s tray icon – it can be hidden by using

the -tray_icon_visible option:

public final Process process = Runtime.getRuntime().

 exec("java –jar ProtectionSupport.jar ../samples/DemoCalc.launcher

 -tray_icon_visible false");

By default, Protection Support’s tray icon uses an image supplied by Protection Support

itself – a small “vault” icon. If required, it is possible to specify a different image using

the -tray_icon_image option:

public final Process process = Runtime.getRuntime().

 exec("java –jar ProtectionSupport.jar ../samples/DemoCalc.launcher

 -tray_icon_image some-tray-icon.png");

By default, Protection Support’s tray icon shows auto-generated tooltip in form of

“<PRODUCT_NAME> License Manager” like “Demo Calculator License Manager”. It is

possible to specify a different tooltip text using the -tray_icon_tooltip option:

public final Process process = Runtime.getRuntime().

 exec("java –jar ProtectionSupport.jar ../samples/DemoCalc.launcher

 -tray_icon_tooltip \"Some App License Manager\"");

It is possible to manage which commands will be shown in the Protection Support’s tray

icon popup menu by specifying the -tray_icon_commands option. If you want to specify

the exact list of the commands – list them delimited by comma. For example, to specify

that only the upgrade and about commands need to be shown:

public final Process process = Runtime.getRuntime().

 exec("java –jar ProtectionSupport.jar ../samples/DemoCalc.launcher

 - tray_icon_commands \"upgrade,exit\"");

If you want to add or remove commands from the default list – use plus(+) or minus(-)

prefix followed by a list of commands delimited by comma. For example, to eliminate

showing the about command

public final Process process = Runtime.getRuntime().

 exec("java –jar ProtectionSupport.jar ../samples/DemoCalc.launcher

 - tray_icon_commands \"-about\"");

To allow showing the exit command:

public final Process process = Runtime.getRuntime().

 exec("java –jar ProtectionSupport.jar ../samples/DemoCalc.launcher

 - tray_icon_commands \"+exit\"");

3.1.2 Exiting Protection Support Application

To exit the Protection Support application:

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

15

 Exit its process via some platform-specific API like calling the process.destroy()

method in Java. Note: do not utilize “force exit/quit” methods if possible – let

Protection Support terminate normally and release all the acquired resources.

 Supply the exit command to Protection Support’s input and wait a bit till the app

exits or, in Java, use the Process.waitFor method to wait for the process

termination. See the Topic 3.5 for more information.

3.2 Catching Protection Support Error Output

Catching error output of Protection Support application provides an ability to be notified

on any errors (exceptions) occurred during license reading and checking.

The following code snippet demonstrates how to catch error output of Protection
Support and print all the errors:

Thread errThread = new Thread(new Runnable() {

 public void run() {

 String line;

 try {

 BufferedReader input = new BufferedReader(new

 InputStreamReader(process.getErrorStream()));

 try {

 while ((line = input.readLine()) != null) {

 System.err.println(line);

 }

 } finally {

 input.close();

 }

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

});

errThread.start();

3.3 Catching Protection Support Output

Catching standard output of Protection Support provides an ability to be notified on any
licensing events occurred during license reading and checking. This can be done by

reading lines from Protection Support process’ input stream.

The following code snippet demonstrates catching output of Protection Support and

calling a handleEvent() method (described in the next topic) to handle licensing

events:

Thread inThread = new Thread(new Runnable() {

 public void run() {

 String line;

 try {

 BufferedReader input = new BufferedReader(new

 InputStreamReader(process.getInputStream()));

 try {

 while ((line = input.readLine()) != null) {

 System.out.println(line);

 handleEvent(line);

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

16

 }

 } finally {

 input.close();

 }

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

});

inThread.start();

3.4 Handling Protection Support Events

Ability to handle licensing events provides an ability to enable, disable or fine tune parts

of your application’s functionality according to a supplied license. Please check the

Listening License Reader Events and the Listening License Host Events topics for more

information.

Protection Support prints licensing events to the standard output where each event

occupies one line. Each event corresponds to a method of the LicenseListener

interface where all the data is represented by a Map encoded in JSON format:

{"description":"License is OK: test","event":"licenseOk",

"parameters":{"license":{"properties":{},"licenseNumber":"test"…

The following are entries of event’s map:

Key Sample Value Description
"event" "licenseOk" Name of event
"description" "License is OK: test" Human readable description of event
"parameters" {

 "license":{…

 }

}

Parameters of event according to a
corresponding method of the

LicenseListener interface

To handle event:

1. Convert event’s JSON string to a Map. For example by using Jackson processor:

Map eventMap = new ObjectMapper().readValue(anEventData, Map.class).

2. Get event’s name:
String event = (String) eventMap.get("event")

3. Check event name against certain event names that should be handled and add
some code to handle those events. Those event names are matching to the method

names of the LicenseListener interface.

4. Use the data from the parameters entry to utilize event’s arguments e.g. a License.

The following code snippet shows how to handle a "licenseOk" event and print license’s

License Number in that case:

private static void handleEvent(String anEventData) {

 if (! anEventData.startsWith("{"))

 return;

 try {

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

17

 Map<String, Object> eventMap = new ObjectMapper().

 readValue(anEventData, Map.class);

 String event = (String) eventMap.get("event");

 if ("licenseOk".equals(event)) {

 //todo: enable app’s functionality here

 System.out.println("License is OK: "+

 ((Map) ((Map) eventMap.

 get("parameters")).

 get("license")).

 get("licenseNumber"));

 } else if ("licenseInvalid".equals(event)) {

 //todo: disable app’s functionality here }

 } catch (IOException ex) {

 ex.printStackTrace();

 }

}

3.5 Transferring Commands to Protection Support

It is possible to control Protection Support by invoking some of its functionalities like

showing the About Dialog or starting license upgrade process. It can be done by

transferring supported commands to Protection Support via the process’ output stream.

Note: each command must be followed by a \n new line character.

The list of supported commands as follows:

exit quits application
about shows the About Dialog with application and license information
check forces license check
upgrade shows the Licensing Assistant to allow upgrading the license
deactivate shows the Deactivation Assistant that provides ways to deactivate the

license
update performs update of the license from a Licensing Server
checkout checks out available license from a Licensing Server
help shows help

The following code snippet outlines how to start license upgrade process (using the

Licensing Assistant) by passing the "upgrade” command to the Protection Support
process:

try {

 BufferedWriter output = new BufferedWriter(new OutputStreamWriter(

 process.getOutputStream()));

 output.write("upgrade\n");

 output.flush();

} catch (IOException ex) {

 ex.printStackTrace();

}

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

18

Chapter 4

4. License Types

Protection! provides support for several licenses types:

1. Trial:

 License.TYPE_EVALUATION - Evaluation type

 License.TYPE_EXTENDED_EVALUATION - Extended Evaluation type

2. Commercial:

 License.TYPE_COMMERCIAL – Commercial type.

License of each particular type has its own application and behavior.

Trial licenses should be issued for prospective customers who require some time to

discover and evaluate product functionality to decide whether they are ready to buy a

commercial license for the product.

Commercial licenses should be issued for customers who already purchased/acquired

rights to use the product for commercial purpose. It does not matter that both Trial and

Commercial license types have the ability to specify some expiration criteria – license of

either type should be issued correctly according to the status of the customer (e.g.
prospective/evaluation or commercial).

The following functionality depends on license type:

1. Date based expiration.

2. Status of Product features (enabled/disabled) corresponding to an appropriate
license state.

In general, licenses of any type are valid when current date is between license’s issue

and expiration dates (if specified). Trial licenses always have an expiration date as they
are temporary by specification. Though there are several cases which can change rules

how issue and expiration dates are handled:

1. ANY license type: Optional tracking and check of previous application shutdown date

to avoid some tricks with system time.
2. EVALUATION type only: Tracking the date of the license’s first use. It is intended to

eliminate the ability to prolong the trial period simply by obtaining and applying new

(fresh) evaluation licenses.

3. EVALUATION type only: Tracking the fact that the trial license has expired in the
past. In this case no new Evaluation licenses can be applied as such licenses would

still be considered as expired. If there is a need to allow customer to continue

evaluation then a new Extended Evaluation license should be issued and applied

instead of another Evaluation license.

4. EVALUATION type only: Ability to have a flexible expiration date. In this case the
expiration date is recalculated based on the date of the license’s first use and the

duration of the license’s evaluation period. This functionally is useful when the trial

license is bundled with the application i.e. for distribution on CD.

To summarize:

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

19

1. Evaluation licenses CAN be bundled with the application or CAN be issued and

applied by request.

2. Extended Evaluation licenses MUST be issued and applied by request to extend the

customer’s trial period.

3. Commercial licenses SHOULD be issued and applied by request.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

20

Chapter 5

5. License Reading

Protection! life-cycle consists of two major steps: obtaining a license and checking the

license. Instances of LicenseReader are responsible for licenses locating and reading.

T
ip

 It is recommended to use Code Snippets, which are generated by the Protection!

Control Center application, not only to learn about Protection! fundamentals, but also

to easily embed Protection! into custom applications.

5.1 License Reader

To get a license, an instance of the LicenseReader should be created and properly

configured. It can either be done via LicenseReader’s constructor or via factory

method ProtectionFactory.createLicenseReader(). After LicenseReader is created

and properly configured the call of License Reader’s getLicense() method allows

getting a license. License Reader caches an already read license, if any, and always

returns the license without trying to read it again. If the license is still not read due to

the number of reading attempts or due to the errors during reading, then License

Reader continues to try to read the license during any further call of the getLicense()

method. To force License Reader to re-read the cached license the getLicense(true)

method call should be used.

To increase efforts required to break protection, none of the License Reader methods

are showing any error output or throw any exceptions. It is possible to change this

behavior for development and debugging purposes only by calling setVerbose(true)

method.

N
o
te

It is a sole responsibility of the application developer to remove any

setVerbose(true) calls before production deployment of the protected application.

Failure to do so could significantly compromise application security by allowing

malicious user to obtain a wealth of information from License Reader methods output

and/or its exceptions.

There are several operations that should be properly and successfully completed during

the process of getting a license. These operations are: license locating, license reading

and license decoding respectively.

5.2 Locating License

License Reader is capable of locating licenses deployed within the local file system

and/or bundled with the application archive. This allows having various deployment

options. For example it would be practical to bundle an evaluation license with the

application archive to deploy the application on CD to evaluators. This approach allows
users to start evaluating the application without a need to visit the vendor’s site to

register and to get an evaluation license. Later, if the user decides to buy a commercial

license, the user simply copies a new license (obtained from the vendor) to the user’s

HOME folder (where user’s HOME folder is used only to illustrate this example) and the

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

21

protected application will make use of the new license overriding the one bundled with

the application.

The license file is explicitly identified by its name (e.g. DemoCalc.key). The

setLicenseFileName(…) and the getLicenseFileName() methods of the License

Reader can be used to access the name of the license. When the license is located

within the local file system it should be placed in the file named according to the license
name (e.g. DemoCalc.key). The same rule woks for the bundled licenses. It is

impractical to give a license an excessively generic name (e.g. license.key) as it can

easily conflict with other applications protected by Protection! Licensing Toolkit. As a

result, the license name should reflect the product’s name that is more or less unique in
most of cases. For example, for product Demo Calculator license name is DemoCalc.key.

By default, License Reader tries to find a license in the user’s HOME (e.g.

"C:\Documents and Settings\<User Name>\" for Windows) folder first. If a license is not

found then License Reader tries to get it from the root of the application archive. The

default search sequence can be changed by calling of setSearchLicenseInFile(false)

method of License Reader.

While the user’s HOME folder seems to be a reasonably good location for a license file it

is possible to specify another desired location of the license by calling

setLicenseFolder(…) method to let License Reader know exactly where the license

should be located. If the specified license folder denotes the relative path to the folder,

License Reader treats it as a subfolder of the user’s HOME folder. It is possible to
resolve the relative license folder against the current folder of a running application by

calling setUserHomeRelative(false) method. This allows, for example, storing the

license in the sub folder of the application installation root folder.

The License file within the application archive can also be placed to some folder that

differs from the root of the application archive. The setLicenseResourceFolder(…)

allows specifying license location in such a case (e.g. /com/jp/samples/protection/).

N
o
te

 As soon as a license is found, License Reader immediately tries to read and decode the

discovered license and even if it encounters problems during reading and decoding it

never tries to read the license from the alternate location.

T
ip

In some cases there would be a need to load licenses from some other sources (like

database) rather than from file. This could be done by subclassing the License Reader

and overriding the getLicenseInputStream() method. Its implementation should

return proper input stream capable of reading licenses from sources such as database.

5.3 Reading and Decoding License

When the license file is located and it is determined that the license can be read, the
License Reader reads and decodes the license. Asymmetric cipher is used to encode a

license that requires Decryption Key to be specified. It is possible to specify Decryption

Key by calling setDecryptKeyBytes(…) method and passing Decrypt Key as an array of

bytes to the method as a parameter. Application developers should not be concerned

with key generation functionality as Protection! Control Center generates and provides

N
o
te

 Actual location of the user’s HOME folder could depend on how the application is

launched. Windows example: if the application is launched as service the user’s HOME

folder would be C:\; if the application is launched as the standalone the user’s HOME

folder would be C:\Documents and Settings\Some User\.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

22

both keys for license reading and writing. Code Snippet available in the Protection!

Control Center’s Products Screen provides key bytes as well as other code that would be

required to embed Protection! into the custom applications.

Control Center generates a unique key pair combination for any particular product.
Therefore it is impossible to read the license generated for a different product.

N
o
te

During the creation of the product via the product copy mechanism (e.g. with help of

system clipboard), Control Center assigns a new, unique key pair to the copied
product, so even if some products look alike they would have completely different key

pairs. If you need to move/copy a product to a different Product Storage use the “File

| Import Product” to achieve it.

Protection! utilizes third-party RSA cipher implementation provided by Bouncy Castle

JCE Provider. Though under Java6 Protection! also provides SUN’s native RSA cipher

implementation making it possible to get rid of Bouncy Castle. To do so:

1. Make sure that SUN’s JCE security algorithm is used e.g. “RSA – SunJCE – 512”.

2. Instruct Protection! not to use Bouncy Castle either by calling

SecurityProviderFactory.setUseBouncyCastleSecurityProvider(false) in the

application code or by specifying a System Property

com.jp.protection.security.useBouncyCastleSecurityProvider=false.

3. Remove Bouncy Castle libraries (bcprov-jdk14-138.jar) from deployment of the

application.

FIPS Support

There is new support of using FIPS certified security providers. To use it:
1. Convert cipher keys for your product to a provider independent form (X509 and

PKCS8) in Developer Control Center (“Products Screen” -> “Edit | Convert

Encryption Keys”)

2. Alter your source code to apply updated decryption key bytes

3. Rebuild launcher (if used)
4. Rebuild digest (if used)

5. Use a FIPS certified provider. It is possible to use either bundled Bouncy Castle FIPS

provider or use any other FIPS certified compatible provider of your choice.

To use Bouncy Castle FIPS provider: use bundled bc-fips-1.0.1.jar library instead of

bcprov-jdk14-138.jar (or any other newer version of the library).

N
o
te

 Make sure you have only one Bouncy Castle library (either bc-fips-1.0.1.jar or

bcprov-jdk14-138.jar) in your class path. If you have both – your application will be

unable to use Bouncy Castle security provider and may fail.

To use another FIPS certified security provider:

1. Check that provider of your choice supports RSA/ECB/PKCS1PADDING cipher

2. Consult documentation for JCE and for that provider on how to install and configure

it.

5.4 Listening License Reader Events

With the simplest implementation of the Protection! Licensing Toolkit there is no need to

know about any errors that occurred during the license reading. It is enough to call

http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

23

getLicense() method, in order to obtain the license, and later, if

getLicense()method returns the license, the application can just use it. While this

approach can work well in some cases it is better to notify the user about errors,

especially for GUI applications.

To do so Protection! uses the familiar event based model by notifying registered

LicenseReaderListener implementation objects about events that occurred during

license reading. This listener allows listening the following events:

 When the license is found and is ready to be read;

 When the license is missing;

 When the license is corrupted;
 When the license has been successfully read.

T
ip

Since v4.8 it is possible to listen for two additional events by using extended

LicenseReaderListenerExt listener interface: when the license has been updated

and when the license has been removed. Those new methods can be typically called

during updating of the license from Licensing Server or other remote service.

 Whe

N
o
te

 All above events are post process and are for informational purposes only. Therefore it

is impossible to write code in the event method’s implementation to influence license

reading.

There is no default implementation of LicenseReaderListener itself but Protection!

offers two implementations of LicenseListener interface (It combines both

LicenseReaderListener and LicenseHostListener interfaces):

 LicenseAdapter provides a default implementation that prints appropriate messages

to standard output or error streams when it runs in verbose mode. If verbose mode

is off, this implementation does nothing.

 DefaultLicenseAdapter provides a default implementation suitable for GUI

applications as it shows appropriate message dialogs with description of error and

vendor contact information. It is possible to create DefaultLicenseAdapter via its

constructor or via factory method ProtectionFactory.createLicenseListener(…).

5.5 Resolving License Reader Issues

As mentioned above, License Listener does not allow writing of any code to affect

license reading and therefore it is not possible to use such listener to fix any issue(s)

which could occur during the license reading. To meet this goal of fixing issues that
happened during the license reading Protection! provides a simple, yet elegant way by

using a special object (resolver) responsible for the resolving of such issues.

Each resolver should implement LicenseReaderIssueResolver interface and each

License Reader can carry no more than one resolver. This interface introduces the

following methods used by the License Reader when issues are discovered:

 resolveLicenseMissing(…) – called when License Reader is unable to locate a

license;

 resolveLicenseCorrupted(…) – called when a license is corrupted.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

24

T
ip

Since v4.8 it is possible to implement extended LicenseReaderIssueResolverExt

interface which provides a new method: updateLicense(…) – called to attempt

updating license. This method will be called only if License Reader was able to locate

and read a license.

If resolver’s method is able to resolve an issue then it executes all appropriate actions

and returns true to indicate that License Reader should start reading the license again.

If resolver returns false indicating that it is unable to fix the issue then License Reader

fires an appropriate event to the registered License Reader Listeners and stops the

license reading process.

Actual implementation of resolver methods would perform the following actions:

1. Get a new/updated valid license by communicating with remote backend, Licensing
Server or by prompting the user to specify the location of a valid license file etc.

2. Save obtained/updated license to the license file returned by License Reader’s

getLicenseFile() method.

3. Remove the license if it is not available anymore e.g. the user was removed from the

allocation in Licensing Server.

Protection! provides two very powerful resolver implementations: GUI and Headless.

Both implementations can deal with Protection! Backend or Licensing Server to obtain

either evaluation or commercial licenses.

The call of ProtectionFactory.createLicenseReaderIssueResolver(…) can be used

to create GUI resolver. This resolver shows Licensing Assistant Wizard that aids the user

in getting a valid license. It provides the following options:
1. Ability to specify the location of a valid license file;

2. Ability to view information on how to obtain the license offline;

3. Ability to request an evaluation or extended evaluation license from Protection!

Backend;
4. Ability to obtain a commercial license from Protection! Backend by providing the

Serial Number;

5. Ability to obtain licenses from the Licensing Server.

The HeadlessLicenseReaderIssueResolver class provides implementation of headless

license reader resolver. This implementation can be used directly in console or server
applications as it does not expect any assistance from the user. It automatically tries to

get the evaluation license if Serial Number is not specified. If Serial Number is provided,

it tries to get a commercial license instead.

If ready to use implementations are not suited for a particular application, it is possible

to easily implement any required functionality with the help of IssueResolverSupport

class. IssueResolverSupport class provides all of the functionality required to build

custom resolver implementations and hides all communication details with the

Protection! backend.

5.6 Upgrading License

Usually the customer would utilize a trial license to learn and evaluate the application at

first. Next he/she can purchase a commercial license to allow further use of the

application. Or he/she can purchase an upgrade (e.g. from Standard to Professional
edition). To simplify the license upgrade process Protection! provides ready to use

functionality for GUI applications. The upgradeLicense() method of GUI code snippet

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

25

(generated by the Protection! Control Center) starts the upgrading process by launching

the Licensing Assistant Wizard. In this Wizard the user is able to specify the location of a

new license, request an extended evaluation license or request a commercial license by

Serial Number.

Note: it is the sole responsibility of the application developer to properly implement

code that will handle license checking results, to apply new license type, edition or

features set. When it is not possible to apply new license without application restart the

user should be warned about such case and prompted to restart application to apply the

changes. In such case upgradeLicense() method may looks like:

public void upgradeLicense(Component anOwner) {

 if (ProtectionFactory.createLicensingWizard(licenseHost.

 getLicenseReader(),

 anOwner, productInfo).executeModal()){

 JOptionPane.showMessageDialog(anOwner,

 "Application must be restarted for changes to take effect",

 "Message",

 JOptionPane.OK_OPTION | JOptionPane.INFORMATION_MESSAGE);

 }

}

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

26

Chapter 6

6. License Checking

Protection! life-cycle consists of two major steps: obtaining a license and checking the

license. Instances of LicenseHost are responsible for licenses checking.

T
ip

 It is recommended to use Code Snippets, which are generated by the Protection!

Control Center application, not only to learn about Protection! fundamentals, but to

also easily embed Protection! into custom applications.

6.1 License Host

License Host is the heart of the entire Protection! framework as it provides actual

checking of a license that has been successfully read by the License Reader. It is

possible to create License Host via the constructor but it is recommended to utilize the

appropriate factory method ProtectionFactory.createLicenseHost(…) as this factory

takes care of Protection! Edition and therefore creates instances of appropriate

LicenseHost implementations. License Host works in conjunction with the License

Reader object and uses it to read licenses. As a result a properly configured License

Reader needs to be specified for the License Host before its first use. Such an approach
simplifies the use of Protection! as the application’s code should only deal with the

License Host which in turn is able to provide all of the required services and information

about environment, license, product etc.

To increase efforts required to break protection all License Host methods neither provide
any error output nor throw any exceptions. It is possible to change this behavior for

development and debugging purposes only by calling setVerbose(true) method.

N
o
te

It is the sole responsibility of the application developer to remove any

setVerbose(true) calls before production deployment of the protected application.

Failure to do so could significantly compromise application security by allowing a

malicious user to obtain a wealth of information from License Host methods output

and/or its exceptions.

The license can carry text of the License Agreement which can be shown in the About

Dialog or used to prompt user to accept the terms and conditions of the License

Agreement. It can be specified either during issuing of the license or it can be assigned

by License Host during the license check procedure. Assigning text of the License
Agreement during issuing of the license is not recommended as it greatly increases the

size of the license file. However, this can be appropriate for issuing licenses that hold

custom license agreements for some particular customers only. In most cases

appropriate License Agreement text should be assigned to the License Host. License
Host will use the specified License Agreement text during the license check. It is

possible to have different License Agreement text for evaluation and for commercial

licenses by using setLicenseTextEvaluation(…) and setLicenseTextCommercial(…)

methods respectively.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

27

The main method of License Host is checkLicense().This method performs all of the

work associated with the license checking procedure. checkLicense() method uses

License Reader to obtain the license needed to be checked. If the license has not been

read yet then the license would first be read. However, if the license was already read

then a cached license will be used for the checking mechanism. It is possible to force
license reading and skip the cached, previously read license, by a call of

checkLicense(true) method.

In most cases the application should call checkLicense() during its startup to

determine whether the application can run and if so which application’s features or

functionalities should be enabled. However, Protection! itself does not impose any

limitations on when checkLicense() metnod should be called. checkLicense() method

can be called any number of times during the application’s run cycle. For example – a

trial version of the server-type application can call checkLicense() each new day to

ensure that the application’s evaluation period is not ended. It is a sole responsibility of

the application developer to properly handle license checking results and to make

appropriate actions to keep the application’s state synchronized with the current license

state.

There could be several threads running in the background to allow for the support of the

network check and the Protection! Licensing Server connection functionalities. If the

application completely exits by calling System.exit(…) method it should not be

concerned about those threads as they will be correctly terminated during the exit. This

approach is not suitable for server applications or components (e.g. Servlets or EJB’s) as

server typically never exits during the termination of server’s application. In this case
all the background threads should be terminated explicitly during the application

shutdown by releasing the License Host via the call of the release() method.

6.2 Analyzing License Checking Results

To analyze results of license checking the developer can obtain license instance from the

LicenseHost and if license is not null then analyze its state and query features enabled

for this license instance. The license state can be obtained by a call of

license.getLicenseState() method. The following license states are supported:

 License.STATE_UNKNOWN - Defines an unknown state of the license, which means

that license just been read and has not yet been checked or validated;

 License.STATE_OK - Defines OK state of the license;

 License.STATE_EXPIRED - Defines expired state of the license, which means that

the license is already expired;

 License.STATE_INVALID - Defines an invalid state of the license, which means that

the license is issued for a different product or incompatible product’s major version.

 License.STATE_NOT_ACTIVATED - Defines not activated state of the license, which

means that the license is either a valid commercial license or a not yet expired
evaluation that needs to be activated.

 License.STATE_LOCK_VIOLATED - Defines that the license is a valid one but it has

been activated and locked to a different computer system.

 License.STATE_NOT_LOCKED – Defines that the license is a valid one but it needs to

be locked using Licensing Server.

It is very common for an application to have several editions. Such an application’s

editions could offer different feature sets i.e. Standard, Professional and Enterprise. In

most cases such applications offer a single installation package as it simplifies build,

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

28

deployment, distribution and makes simpler deployments of the application’s upgrades.

In this case the license file specifies the application edition. Protection! includes support

of an application’s editions by offering a product edition attribute within the license.

Product edition attribute can be analyzed by obtaining its value using

license.getProductEdition() method and therefore enable/disable a particular

application’s functionality specific to the application’s edition.

Dealing directly with the product edition value may seem enough for simple applications

but it can be very restrictive for big and sophisticated applications, especially if such

applications assume some flexible licensing model with certain features set for each

particular customer. Protection! provides a great and easy solution that can help in such
cases. This solution is implemented by the “feature set” functionality of Protection!.

“feature set” allows definition of application’s features representing some part of the

application’s functionality. The application’s features therefore can be individually

enabled for each edition or for a particular license. Therefore, instead (or in addition to

checking product edition) it is possible to check whether a particular feature is
enabled/disabled for a certain license type and license state combination by calling

method license.isProductFeatureSupported(…).

Another, very powerful way to analyze license checking is listening the License Host

events.

6.3 Listening License Host Events

Protection! provides the ability to inform interested parties about the license checking

process by use of an event based model, notifying registered LicenseHostListener

implementation objects about events that occurred during the license checking process.

T
ip

 It is recommended that you combine analysis of the license state and handling of the

events fired during the license reading and validation to obtain greater control over

licensing process.

This listener allows for listening to the following events:

 When the license is expired;

 When the license is OK;
 When the license is invalid;

 When the license is accepted;

 When the license feature is checked;

 When the license is about to expire;
 When the license activation lock is violated;

 When the number of concurrently running copes is violated;

 When the license is not activated.

 When the license is not locked.

N
o
te

 All above events are post process and information events only. Therefore it is

impossible to write code in event method’s implementation to influence license

checking.

There is no default implementation of LicenseHostListener itself but Protection! offers

two implementations of LicenseListener interface (It combines both

LicenseReaderListener and LicenseHostListener interfaces):

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

29

 LicenseAdapter provides a default implementation that prints appropriate messages

to the standard output or standard error streams when runs in verbose mode. If

verbose mode is off this implementation does nothing.

 DefaultLicenseAdapter provides a default implementation suitable for the GUI

applications as it shows appropriate message dialogs with the description of the
error and vendor’s contact information. It can be created either via constructor or

via the factory method ProtectionFactory.createLicenseListener(…).

Using LicenseListener is the preferred and recommended way as it allows listening to

both License Reader and License Host events, which in turn simplifies application

development.

Actual implementation of LicenseListener methods should take the appropriate action

for each event. For example when “license is invalid” event is received it is practical to

show the message to the user (if possible) and then simply exit the application.

Protection! does not expect, predict or assume any particular actions so it is up to the
application’s logic to determine what it will do in each case.

N
o
te

Implementation of LicenseListener methods must provide a safe environment for

calling such methods as many times as necessary (e.g., calling LicenseListener

methods during issues resolving and/or license upgrading processes. It is up to the

application logic to determine how to handle changes in the license – there are neither

requirements nor expectations from the Protection! standpoint.

6.4 License Agreement Acceptance

License Host allows checking whether the user has already accepted the terms and
conditions of License Agreement. It can be done via delegating such functionality to

LicenseAcceptanceDelegate instance, which should be assigned to the License Host.

Protection! provides two default implementations of LicenseAcceptanceDelegate

interface:
 GUI implementation that is able to prompt the user to accept the terms of License

Agreement by showing an appropriate dialog. An instance of GUI implementation

can be created via a call of:

ProtectionFactory.createLicenseAcceptanceDelegate(…) method;

 Headless implementation that always informs License Host that the term of License

Agreement is accepted. It can be created via SimpleLicenseAcceptanceDelegate

constructor. This implementation can be used for headless applications or when the

License Agreement needs to be accepted outside of the application e.g. during

installation.

6.5 Working with Secret Storages

Secret Storage provides a way to persistently and secretly store various and important

information about the application and primarily to support Protection! licensing models

and activities. While it is possible to avoid Secret Storages usage in some cases at least
one Secret Storage is strongly required to support the following:

a. Flexible Expiration mode.

b. License Activation and Deactivation.

c. Usage based expiration model.
d. Grace periods support.

e. Analyzing application shutdown time.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

30

Protection! provides two ready to use Secret Storage implementations: file based and

Java Preferences API based one. Application developers are free to develop and use

custom implementations by making proper implementation of the SecretStorage

interface.

6.5.1 FileSecretStorage Implementation

This implementation of the SecretStorage interface stores its data in a local file using

either very simple encoding or strong encryption. A new instance of FileSecretStorage

can be created using one of its constructors: new FileSecretStorage(".DemoCalc",
"DemoCalc.dat", true).

The Secret Storage’s folder can denote an absolute or relative path to the folder. If a
relative path is specified it can be resolved as a subfolder of the user’s HOME folder or

current folder of the running application. This behavior can be controlled via

setUserHomeRelative(…) method.

N
o
te

 Actual location of the user’s HOME folder could depend on how the application is

launched. Windows example: if the application is launched as a service the user’s
HOME folder would be C:\; if the application is launched as a standalone the user’s

HOME folder would be C:\Documents and Settings\Some User\.

It is possible to skip encryption of the Secret Storage file for development and

debugging purposes only by calling the setSkipEncryption(true) method.

It is strongly recommended to use strong encryption for File Secret Storages. It is OFF
by default to maintain compatibility with previous versions of Protection!. Strong

encryption can be turned ON by using the setUseStrongEncryption(…) method or by

creation of a File Secret Storage using appropriate constructor.

If it is possible to run several instances of the application on the same computer – it

may cause File Secret Storages to become corrupt. To control and prevent concurrent
modifications of the Secret Storages it is possible to let File Secret Storages to utilize

lock files (.lck). This mode can be turned ON by using setUseLockFile(…) method or by

creation of a File Secret Storage using appropriate constructor.

To increase efforts required to break protection no FileSecretStorage methods provide

any error output nor throw any exceptions. It is possible to change this behavior for

development and debugging purposes only by calling setVerbose(true) method.

6.5.2 PreferencesSecretStorage Implementation

This implementation of the SecretStorage stores its data using the Java Preferences

API. A new instance of PreferencesSecretStorage can be created using one of its

constructors. It is possible to explicitly specify a Preferences instance or provide

arguments needed to locate proper Preferences instance. For example call of

constructor new PreferencesSecretStorage(“com.acme.app”, true) creates a new

PreferencesSecretStorage instance that uses the User Preferences node with

“/com/acme/app” absolute path.

To increase efforts required to break protection no PreferencesSecretStorage

methods provide any error output nor throw any exceptions. It is possible to change this

behavior for development and debugging purposes only by calling setVerbose(true)

method.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

31

6.5.3 JarFileSecretStorage Implementation

This implementation of the SecretStorage interface stores its data as an entry in a local

archive. A new instance of JarFileSecretStorage can be created using one of its

constructors: new JarFileSecretStorage(".DemoCalc", "DemoCalc.jar", true,

com/demo/democalc.dat). Using that kind of Secret Storage allows hiding sensitive

data in a .jar file that may look like just an application library.

The Secret Storage’s folder can denote an absolute or relative path to the folder. If a

relative path is specified it can be resolved as a subfolder of the user’s HOME folder or
current folder of the running application. This behavior can be controlled via

setUserHomeRelative(…) method.

N
o
te

 Actual location of the user’s HOME folder could depend on how the application is

launched. Windows example: if the application is launched as a service the user’s

HOME folder would be C:\; if the application is launched as a standalone the user’s

HOME folder would be C:\Documents and Settings\Some User\.

It is possible to skip encryption of the Secret Storage file for development and

debugging purposes only by calling the setSkipEncryption(true) method.

It is strongly recommended to use strong encryption (ON by default) for Jar File Secret

Storages. Strong encryption can be controlled by using the

setUseStrongEncryption(…) method or by creation of a Jar File Secret Storage using

appropriate constructor.

If it is possible to run several instances of the application on the same computer – it

may cause Jar File Secret Storages to become corrupt. To control and prevent

concurrent modifications of the Secret Storages it is possible to let Jar File Secret

Storages to utilize lock files (.lck). This mode can be turned ON by using

setUseLockFile(…) method or by creation of a Jar File Secret Storage using

appropriate constructor.

To increase efforts required to break protection no JarFileSecretStorage methods

provide any error output nor throw any exceptions. It is possible to change this behavior

for development and debugging purposes only by calling setVerbose(true) method.

6.6 Resolving License Host Issues

As mentioned above, License Listener does not allow writing of any code to affect

license checking and therefore it is not possible to use License Listener to fix any

issue(s) that could occur during the license checking. To meet this goal of fixing issues
that happened during the license checking, Protection! provides a simple, yet elegant

way by using special object (resolver) responsible for resolving such issues.

Each resolver should implement LicenseHostIssueResolver interface and each License

Host can carry no more than one resolver. This interface introduces methods used by

License Host when it discovers any issues:

 resolveLicenseInvalid(…) – called when either the product name or its major

version do not match.

 resolveLicenseMissingActivation(…) – called when license requires activation

but Activation Key is missing from the license;

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

32

 resolveLicenseActivationLockViolation(…) – called when License Host detects

that the license has been locked to a particular computer and is being used on

another computer system.

 resolveLicenseExpired(…) – called when the license is expired;

 resolveLicenseNotLocked(…) – called when the license requires a lock from the

Application Server but the LicenseHost was unable to acquire such lock.

 resolveLicenseCanNotBeUpgraded – called when the license is invalid because no
required license of previous version was found.

If resolver’s method is able to resolve an issue then it executes all appropriate actions

and returns true to indicate that License Host should start reading and checking the

license again. If resolver returns false, then it indicates that resolver was unable to fix

the issue and License Host then fires appropriate events to the registered License Host

Listener’s and stops license checking.

Actual implementation of the resolver methods would perform the following actions:
1. To resolve invalid or expired licenses:

a. Get a valid license by communicating with the remote backend, by prompting the

user to specify the location of a valid license file or by querying the Licensing

Server.
b. Save the obtained license to the file returned by the License Reader’s

getLicenseFile() method.

2. To resolve license activation issues:

a. Get an activated license by communicating with remote backend or by prompting

the user to specify the location of an activated license file.

b. Save the obtained license to the file returned by the License Reader’s

getLicenseFile() method.

3. To resolve missing lock issues:

a. Try again to acquire a lock.

Protection! provides two very powerful resolver implementations: GUI and headless.

Both implementations can deal with Protection! Backend to get and activate licenses.

GUI implementation also provides the ability to resolve missing lock issues and obtain
licenses from the Licensing Server.

To create GUI resolver the call of ProtectionFactory.createLicenseHostIssueResolver(…)

can be used. This resolver shows Licensing Assistant Wizard or License Activation
Assistant Wizard that aids the user in getting or activating licenses. These Wizards

provide the following options:

1. Ability to specify the location of a valid license file;

2. Ability to view information on how to obtain the license offline;

3. Ability to request an evaluation or extended evaluation license using either a Direct
or a Proxy Internet connection;

4. Ability to obtain a commercial license by providing the Serial Number.

5. Ability to activate a license online.

6. Ability to view information on how to activate the license offline.
7. Ability to assist in resolving missing license lock issues.

8. Ability to obtain licenses by querying Licensing Server for them;

The HeadlessLicenseHostIssueResolver class provides implementation of the

headless license host resolver. This implementation can be used directly in console or

server applications as it does not expect any assistance from the user. It automatically
tries to get the extended evaluation license (if the license is expired and Serial Number

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

33

is not specified). If Serial Number is provided it tries to get the commercial license

instead.

If ready-to-use implementations are not suited for a particular application it is possible

to easily implement any required functionality with the help of IssueResolverSupport

class. IssueResolverSupport class provides all of the functionality required to build a

custom resolver implementations and hides all communication details with the

Protection! backend.

6.7 License Expiration

Protection! supports two types of license expiration: date based and usage based ones.

It is possible to combine both expiration types and the license gets expired whichever

comes first.

6.7.1 Date Based License Expiration

Protection! provides the ability to limit license usage by specifying a license expiration

date. If the license has an expiration date it is considered OK till the system date is less

than or equal to the specified expiration date. If the system date is greater than the
specified expiration date then the license is considered as expired and therefore gets

License.STATE_EXPIRED state.

The first known expiration date is automatically maintained in the Secret Storages to

eliminate the ability to prolong the expiration period by tampering with the system

date/time. This date is bound to the licenses’ major version allowing to evaluate the
product only once for a specific major version. However in some cases even the minor

releases could be considered significant. In order to allow customers re-evaluate such

minor releases the license minor version should be taken into the equation. This could

be done by overriding the following method:

protected String getPreviousExpirationDatePropertyName() {

 License license = getLicense();

 return license != null ?

 PROPERTY_PREVIOUS_EXPIRATION_DATE +"["+

 String.valueOf(license.getProductMajorVersion())+"."+

 String.valueOf(license.getProductMinorVersion())+"]" :

 PROPERTY_PREVIOUS_EXPIRATION_DATE;

}

Additionally it is possible to enable checking for the last application shutdown date by

calling the

LicenseHostPro.setCheckPreviousShutdownDate(true) method.

When license is expired then the corresponding flag is stored in the Secret Storages. If

this flag is ON then the license will be considered to be expired regardless of the system

values, license issue and its expiration dates. This minimizes the ability to circumvent

the expiration sub-system by manipulating system’s date/time values. This flag is bound

to the licenses’ major version allowing to evaluate the product only once for a specific
major version. However, in some cases even the minor releases could be considered

significant. In order to allow customers re-evaluate such minor releases (when the

license has already expired) the license minor version should be taken into the equation.

This could be done by overriding the following method:

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

34

protected String getAlreadyExpiredPropertyName() {

 License license = getLicense();

 return license != null ?

 PROPERTY_ALREADY_EXPIRED +"["+

 String.valueOf(license.getProductMajorVersion())+"."+

 String.valueOf(license.getProductMinorVersion())+"]" :

 PROPERTY_ALREADY_EXPIRED;

}

N
o
te

 Once Evaluation license is expired it is not possible to simply issue another Evaluation

license with a new expiration date as the license still will be considered as expired.

Extended Evaluation licenses are intended for this purpose and should be issued

instead.

It is possible to bundle a license with the application archive allowing easy distribution of

a protected application (e.g. distribution via CD). When the bundled license is an

Evaluation license it is possible to overcome license issue date allowing the users to

start the evaluation based on the application’s installation or the application’s first use
date. This can be done by allowing flexible expiration date via call of

setAllowFlexibleExpirationDate(true) method.

N
o
te

 Flexible expiration is functional for Evaluation licenses only; expiration of Extended

Evaluation or Commercial licenses is not affected.

Protection! provides support for the grace period approach used for date based

expiration. Grace period is the number of days within which the user is eligible to
continue working with an application even after reaching the expiration date. During the

grace period the license is considered OK and corresponding event

licenseAboutToExpire(…) is fired to notify interested listeners. After the grace period

ends the license is considered as expired. Grace period approach could be an invaluable

option for some mission critical application where the application could not be

interrupted due to the delay by the purchasing department to obtain a new application
license.

6.7.2 Usage Based License Expiration

Protection! provides the ability to limit license usage by specifying a license usage

quota. If the license has usage limitation it is considered OK until actual license usage

has not reached the usage limit. If the actual license usage is greater than the usage

quota then the license is considered as expired and therefore gets

License.STATE_EXPIRED state.

By default the usage count is automatically incremented during the first successful
license check. Therefore each application launch, given that the license is OK, is

considered as one license usage. While such an approach is reasonable for GUI or for

console utility applications it is definitely not suitable for server based applications. It is

up to the particular server application code to determine what should be considered as a
usage (e.g. request, session etc.). For server applications usage count can be

programmatically incremented by calling the incUseCount() method. To eliminate

redundant usage count increment during server application startup the usage auto

increment feature can be turned off by calling the setAutoIncUseCount(false)

method before the license checking procedure.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

35

Protection! provides supports for the grace period approach used for usage based

expiration. Usage based grace period is the number of usages within which user is

eligible to continue working with an application even after reaching the usage quota.

During the usage based grace period the license is considered OK and the corresponding

event licenseUseLimitAboutReach(…) is fired to notify interested listeners. After the

usage based grace period ended license is considered as expired.

Im
p
o
rt

a
n
t For licenses having the License.USER_LICENSING_FLOATING_LS model the usage

quota will be distributed among all the users using certain license. This quota will be
tracked by the Licensing Server. If that quota is reached – the license will not get the

License.STATE_EXPIRED state. Instead the License.STATE_NOT_LOCKED state will be

assigned to the license and a corresponding licenseNotLocked event will be fired.

6.8 User Licensing Models

User Licensing Model defines how to handle different users working concurrently with

the same license. The following models are supported:

 License.USER_LICENSING_UNCOUNTED – any number of users can work concurrently

with the license regardless of the license’s limits.

 License.USER_LICENSING_FLOATING – only a certain number of users can work

concurrently with the license according to the license’s Number of Copies value.

Actual usage check is done using network broadcast facility.

 License.USER_LICENSING_NAMED - only a certain number of users can work with the

license according to the license Number of Copies value. This is done via activation

and/or activation-and-lock facility.

 License.USER_LICENSING_FLOATING_LS – only a certain number of users can work

concurrently with the license according to the license Number of Copies, CPU Core,

Memory and Usage limits. Actual limits check is done by contacting the Licensing
Server and acquiring the license lock to confirm ability to use the license.

 License.USER_LICENSING_NAMED_LS – only a certain number of users can work with

the license according to the license number of Copies Value. Actual usage check is

done by contacting the Licensing Server and acquiring the license lock to confirm

ability to use the license. Once acquired, License lock is reserved for a particular

user for min 1 day’s period.

The following table shows the summary of the User Licensing Models applicability and

some of the requirements to support them:

Model # Copies

Check

Vendor

Involvement

Licensing

Server

Native

Libraries

LAN WAN

Uncounted No No No No N/A N/A

Floating Yes No No No Yes1 No

Named Yes Yes No Yes2 N/A N/A

Floating – LS Yes No Yes No Yes Yes

Named - LS Yes No Yes No Yes Yes

1 Network check may not work in some network configurations when broadcast messages are blocked by
firewalls.
2 Optionally requires native libraries when lock to the CPU ID or Motherboard ID address of the network card is

used.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

36

6.8.1 Named User Licensing Model

Protection! supports the Named User Licensing Model via the Activation concept. The

Activation process always requires contacting an application vendor/publisher either off-
line (e.g. by sending e-mail to the vendor/publisher sales department) or on-line by

using Protection! backend. This allows the application vendor/publisher to:

1. Track actual applications deployments. For example, if a bundled evaluation license

requires the application evaluator to provide his/her credentials before using a
protected application.

2. Implement Named User licensing model by locking the license to a particular

computer system and by enabling usage of only a purchased number of application

copies by activating only the exact number of licenses specified in the license’s
“number of copies” attribute.

Activation assumes having Activation Key in the license. As only the vendor is able to

place Activation Key to the license then it should be contacted some way to provide an
activated license. It can be done automatically via Protection! Backend or manually by

placing an Activation Key to the license using Control Center and sending an activated

license back to the customer. Therefore, in a nutshell, licensing where activation is

required is a two step process:

1. Getting a license from the vendor.
2. Sending activation information to the vendor and getting back an activated license.

This may look slightly overcomplicated but it is designed this way because only the

license is a reasonably safe place to store such important information and only the
vendor can safely modify license attributes.

The following activation types are supported:

1. Activation – requirement to have certain Activation Key based on license attributes
in the license. This type of activation simply tells vendors actual license usage

statistics and allows making some decisions based on it.

2. Activation and Lock - requirement to have certain Activation Key based on the

license and local computer attributes in the license. This type of activation extends

simple Activation by locking the license to a particular computer and therefore
eliminating the ability to move and use the license on other computer systems.

Lock Attributes

It is possible to specify several attributes to which a license could be locked. It can be

done via setActivationLockOptions(options) method; where options could be any

set of the following constants:

 LicenseHostPro.LOCK_MAC_ADDRESS - Option specifies that license should be locked

to MAC address of network card.

 LicenseHostPro.LOCK_USER - Option specifies that license should be locked to the

current user.

 LicenseHostPro.LOCK_IP_ADDRESS - Option specifies that license should be locked

to IP address of the local host.

 LicenseHostPro.LOCK_HOST - Option specifies that license should be locked to the

computer name.

 LicenseHostPro.LOCK_CPU_NUMBER - Option specifies that license should be locked

to the number of CPU(s).

 LicenseHostPro.LOCK_INSTALL_ID - Option specifies that license should be locked

to an internal installation ID (randomly generated and securely saved by Protection!

to the Secret Storages during the first application run).

 LicenseHostPro.LOCK_CPU_ID - Option specifies that license should be locked to

the CPU ID.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

37

 LicenseHostPro.LOCK_MOTHERBOARD_ID - Option specifies that license should be

locked to the motherboard ID.

 LicenseHostPro.LOCK_CUSTOM_ATTRIBUTE - Option specifies that license should be

locked to the custom attribute provided by a protected application.

N

o
te

Locking licenses to CPU or Motherboard ID’s requires deployment of OSHI library

and its dependencies. See deploy.html for more information. OSHI is compatible

with Java 7 and higher; it has been implemented and tested on the following

systems:
 Windows 7 and higher.

 Mac OS X version 10.6 (Snow Leopard) and higher

 Linux (Most major distributions) Kernel 2.6 and higher

 Unix: Solaris 11 (SunOS 5.11) / FreeBSD 1

The set of supported lock attributes is sufficient for the majority of applications.

However, if other hardware attributes must be used then it can be done via:

 Using bundled OSHI (https://github.com/oshi/oshi) library. Protection! uses that

library to obtain CPU and Motherboard ID’s but that library provides lots of other
system information attributes that can be utilized.

 Writing the native code which would obtain and return information for the required

attributes and using JNI to call such native code.

 Using a third-party wrapper over JNI to directly call native methods of underlying OS
to obtain information for the required attributes. Good examples of such third-party

wrappers are JNIWrapper (www.jniwrapper.com) or xFunction (www.excelsior-

usa.com/xfunction.html) or JNA (https://github.com/java-native-access/jna).

The License Host uses an instance of LicenseHostProContext to supply all the system

information attributes. So to provide different values for those attributes, or to provide

values for custom locking attribute, a custom implementation of

LicenseHostProContext should be used. A sample code is below:

LicenseHostPro.setContext(new Java6LicenseHostProContext(){

 public String getCustomLockAttribute() {

 //todo: obtain custom attribute here

 return customAttribute;

 }});

N
o
te

 Do not directly subclass LicenseHostProContext class; always subclass

Java6LicenseHostProContext instead. Base LicenseHostProContext provides

legacy implementation for obtaining MAC Address attribute and does not provide
CPU or Motherboard ID’s.

Activation Keys Generation

If license activation is required, then License Host generates an Activation Key by calling

of getActivationKey() method and checking whether such property is already present

in the license and, if so, whether it has the same, required value. Method

getActivationKey() in actuality calls the following methods depending on whether the

license needs to be locked to a particular computer system:

1. getActivationKey(license) – generates Activation Key when license should not be

locked to a particular computer. This method’s implementation uses concatenation of
the license number hash code plus license activation number (number of particular

license activations).

https://github.com/oshi/oshi
http://www.jniwrapper.com/
http://www.excelsior-usa.com/xfunction.html
http://www.excelsior-usa.com/xfunction.html
https://github.com/java-native-access/jna

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

38

2. getActivationLockKey(license) – generates Activation Key when license should

be locked to a particular computer system. The current implementation provides the

ability to use several attributes, mentioned above, to generate the required value.
Custom implementation should override this method to add any other required

criteria.

To generate the usual form of Activation Key (e.g. LZL2P-TXDJE-RE3F1-GKOQ5-Q4TJA)

the getActivationKey(long) method should be used. It takes a number of long data

type which represents the activation key and encodes it into textual form.

While Protection! already provides several attributes to which the license could be
locked to, it is possible to use any other custom attribute(s) for that purpose. The

following code snippet illustrates how to employ name of OS to be used as the activation

and lock key:

public class LicenseHostProEx extends LicenseHostPro {

 public String getActivationLockKey(String aLicenseNumber) {

 return getActivationKey(composeActivationLockKey(aLicenseNumber,

 System.getProperty(“os.name”).hashCode()),

 getActivationKeyChars());

 }

protected String[] getActivationLockKeys(String aLicenseNumber) {

 return new String[]{getActivationLockKey(aLicenseNumber)};

}

N
o
te

A pair of
getActivationLockKey(aLicenseNumber)

 and
getActivationLockKeys(aLicenseNumber)

methods must always be overridden and properly implemented in order to introduce

any custom lock attribute or to change how several attributes are merged. The first

method should calculate and return primary activation key (e.g. for primary network
interface), the second one should calculate and return all available activation keys

(e.g. for all available network interfaces).

In some cases Activation Keys would be generated before delivering of actual licenses.
To make it works correctly the custom LicenseHost implementation is needed to

eliminate requirement to have any license in order to generate Activation Key:

class LicenseHostProEx extends LicenseHostPro {

 public String getActivationLockKey(String aLicenseNumber) {

 return super.getActivationLockKey("");

 }

 protected String[] getActivationLockKeys(String aLicenseNumber) {

 return super.getActivationLockKeys("");

 }

}

Grace Period

Protection! supports grace period for activation – a number of days within which user is

eligible to skip activation and to continue working with the application without any

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

39

limitations on the application’s functionality. If the license is still not activated after the

end of the grace period the license will be considered as not activated and get the

License.STATE_NOT_ACTIVATED state. Activation grace period is stored as a

License.PROPERTY_ACTIVATION_GRACE_PERIOD license property and can be read to

provide further analysis if needed. To provide activation grace period functionality,
Protection! tracks the first launch date of the application and optionally the application’s

shutdown date. To enable this functionality valid Secret Storages with write permissions

should be specified and there should be no tricks with the system time.

License Deactivation

License deactivation allows de-authorizing the application to use a certain license to

either completely terminate using of said license or to move the license to another

computer.

The license can be deactivated only if it is a Commercial, valid and currently activated

license. It is possible to test whether the current license can be deactivated by call of

canDeactivateLicense() method.

Deactivation is a two step process:

1. De-authorizing the application to use a certain license. After this step the license is
considered not activated on this computer. Note this step is one way only, therefore

it cannot be rolled back.

2. Notifying the vendor about deactivation completion. This allows the vendor to

remove the vendor’s record about previous license activation and to allow further
activation on another computer. Note this step is optional and therefore it may be

canceled by the user discretion.

The deactivateLicense() method allows deactivation of the current license. It returns

an encoded Deactivation Key that holds operation result. This key can be sent to

Protection! Backend or manually to the application’s vendor to confirm that the

customer has actually deactivated the license. The operation is considered to be
completed if the deactivation data is successfully stored in the Secret Storages.

Therefore Secret Storages must be properly configured and have write permissions

enabled.

The deactivateLicense() method returns one of the following result codes:

 LicenseDeactivationWizard.DEACTIVATE_FAIL – deactivation procedure has failed.

 LicenseDeactivationWizard.DEACTIVATE_LOCAL - deactivation procedure has

completed on the local computer but vendor was not yet been notified about

deactivation results.

 LicenseDeactivationWizard.DEACTIVATE_LOCAL_VENDOR – deactivation procedure

has completed on the local computer and vendor has been notified about

deactivation results.

It is the responsibility of the developer to provide proper handling of activation results if

needed. For example the application can be forced to exit or all of the application’s

functionality can be hidden or disabled.

6.8.2 Floating User Licensing Model

This model allows limiting the number of concurrently running applications with the

same license by using the number of copies value stated in the license. License Host
does this check by sending broadcast network messages and collecting and analyzing

responses. This option may work well inside the network of a small/medium size

company or within a workgroup. Even though actual broadcast is firewall friendly, the

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

40

network check could fail if the network has in place firewalls or routers that have been

configured to block network broadcast messages. In this case it is better to use the

Licensing Server based approach.

To allow a network check it should be enabled for the License Host instance. The
network check is enabled by default for the License Host therefore, if network check

should be disabled, a call of setNetworkCheckEnabled(false) method should be

performed.

Handling Number of Copies Violation Event

To handle number of copies violation the application should listen LicenseHostListener

event and implement required the code in the numberCopiesViolation(…) method’s

body. It is up to the application how to react to such event. For example: the application

can show some message to the user and stop working; or the application can simply log

the event for future analysis, etc.

N
o
te

 Only the instance(s) of the application(s) that actually exceeded number of copies

limit will be notified via firing the numberCopiesViolation() event.

Check Host Policy

It is possible to control how several instances of the application running on the same

host will be counted. It can be done by specifying policy value via call of the

setNetworkCheckHostPolicy(policy) method. Where policy value is represented by

one of the constants:

3. NetworkCheck.POLICY_SAME_HOST – counts applications running on the same host

only.

4. NetworkCheck.POLICY_DIFFERENT_HOST - counts applications running on the

different host only.

5. NetworkCheck.POLICY_ANY_HOST - counts applications running on any hosts.

N
o
te

 Specified check host policy can be ignored during the license check if the

License.OPTION_COUNT_ANY_HOSTS or License.OPTION_COUNT_DIFF_HOSTS option is

explicitly specified for the license.

Releasing Network Check Resources

The network check uses a background thread to support its functionality. If the

application completely exits by calling System.exit(…) method it should not be

concerned about this thread as it will be correctly terminated during the exit. This
approach is not suitable for server applications or components (e.g. Servlets or EJB’s) as

the server is typically never exits during the stop of the server’s application. In this case

the network check background thread should be terminated explicitly during the

application shutdown via the call of stopNetworkCheck() method or by simply releasing

the License Host by the call of the release() method.

6.8.3 Floating and Named User Licensing Models - Licensing Server

The basis for these models is the requirement that the client application must acquire a

lock for the license by contacting the Licensing server. The Licensing Server is fully

responsible for deciding whether a certain license lock request can be satisfied based on

the number of locks already issued, user and application attributes, administrator rules
etc. If the license lock is successfully acquired the license is considered OK; otherwise

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

41

the license gets the License.STATE_NOT_LOCKED state and a corresponding

licenseNotLocked event is fired.

The Licensing Server tracks all the licenses in use and calculates total values for the

Number of Copies, CPU Core, Memory and Usage for each license and then compares it
with corresponding limits specified in the license. If any of those limits is reached – a

license lock will not be acquired therefore a user will not be able to use that license. The

following are license properties which define those limits:

 License.PROPERTY_CPU_LIMIT
 License.PROPERTY_MEMORY_LIMIT

 License.PROPERTY_USAGE_LIMIT

N
o
te

Applications report total physical memory to be tracked by the Licensing Server; it is
neither free memory nor memory available to JVM.

Obtaining total physical memory for applications requires deployment of OSHI library

and its dependencies. See deploy.html for more information. OSHI is compatible with

Java 7 and higher; it has been implemented and tested on the following systems:
 Windows 7 and higher.

 Mac OS X version 10.6 (Snow Leopard) and higher

 Linux (Most major distributions) Kernel 2.6 and higher

 Unix: Solaris 11 (SunOS 5.11) / FreeBSD 1

The Licensing Server holds and maintains a list of license sessions for all acquired

license locks. This allows for precise calculation of which licenses are in use and how

many license copies are in use or free to be used. The license lock can be explicitly
released by the client application (e.g. during application exit) or when the Licensing

Server detects that some license lock is expired because communication with the

application is lost (e.g. due to network and/or the application failures).

The main behavior difference of Floating and Named User Licensing Models is how
license sessions are handled after the corresponding license locks is released:

a. Floating User Licensing Model – license sessions are transient. Such license sessions

get immediately removed from the list after the release of license locks making the

locks free and allowing other users to use that license.
b. Named User Licensing Model – license sessions are persistent. Such license sessions

just get marked as “not in use” and continue to stay in the list after the release of

license locks, therefore keeping the locks engaged. Such an approach allows

reserving licenses for particular named users. Named licenses are reserved for

certain users for certain amount of days (1 minimum) as specified by lockPeriod

property of a License. After that period, if there is need to transfer license rights to a
different user and/or computer, then a corresponding license session can be

manually removed by the Licensing Server administrator.

Adding Licensing Server Support

The application code should be aware of how to connect to the Licensing Server in order
to support corresponding Licensing Models. It can be done by registering specific

provider implementation:

LicensingServiceProviderFactory.getInstance().registerProvider("RMI",

 RmiLicensingServiceProvider.class, “localhost", "", "", true);

The Licensing Server address attribute passed to the registerProvider()method

represents the default address that will be used to locate the Licensing Server when the

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

42

corresponding attribute is not specified in the license. The login and password attributes

are reserved for future use therefore any passed values are not used.

N
o
te

If Protection! Launcher is used there is no need to make any changes in the source

code. The desired Licensing Service Provider and its attributes should be specified for
the product using the Edit Product | Integration | Licensing Server page in the

Products Screen of the Proteciton! Developer Control Center. To apply all the changes

the Launcher should be simply re-built.

Listening License Lock Expired Event

The licenseLockExpired event is called when the license lock is expired. This issue

can occur when connection to the Licensing Server is lost due to network or Licensing

Server failure. License lock expiration can be handled by:

 Trying to acquire the license lock again.

 Exiting the application.
 Limiting application functionality.

 Allowing the user to complete and save the work by offering some grace period and

then exiting the application.

It is not recommended to completely ignore this event, especially for the Floating User
Licensing Model. If expiration is caused by the network failure (not by the Licensing

Server failure) the Licensing Server will eventually release license lock after some

timeout. This means that different users will be able to acquire license locks while other

application(s) with expired license locks are still functional. This allows users to
overcome number of copies limitations simply by temporary disabling network

interfaces, waiting for license lock expiration on the Licensing Server and allowing new

users to start using applications.

It is often practical to provide the user with the ability to acquire the license lock again

and to continue working. The easiest way to achieve this is by re-launching the license

check procedure by calling the checkLicense() method. If the network is restored or

the Licensing Server is operational at the time of the license check – all the additional

activities would be transparent to the user. Otherwise the License Lock Assistant could

be shown to help the user in acquiring the license lock.

Listening for License Lock Revoked Event

The licenseLockRevoked event is called when Licensing Server administrator requests

license lock revocation. This request can be accepted or declined (ignored) depending

on the application’s nature and its needs and/or user’s input. To decline revocation no

special actions should be done. To accept revocation the license lock must be released

by the licenseHost.unlockLicense()method call. One of the following actions would

be performed after the loss of license lock:

 Exiting the application.
 Limiting application functionality.

 Allowing the user to complete and save the work by offering some grace period and

then exiting the application.

It is not recommended to take no actions to handle the loss of license lock as it allows
different users to acquire license locks while other application(s) with revoked license

locks are still functional. This allows for the ability to overcome the number of copies

limitations simply by sequential revoking of the license locks and letting new users start

using applications.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

43

Grace Period

Protection! supports grace period for corresponding Licensing Models – a number of

days within which the user is eligible to skip license lock acquisition and to continue

working with an application without any limitations on that application’s functionality.

If the license lock still could not be acquired after the end of the grace period the license

will be considered as not locked and will get the License.STATE_NOT_LOCKED state. The

grace period is stored as a License.PROPERTY_LOCK_GRACE_PERIOD license property and

can be read to provide further analysis if needed.

To provide the license lock grace period functionality, Protection! tracks the first launch

date of the application and optionally the application’s shutdown date. To enable this
functionality valid Secret Storages with write permissions should be specified.

Check Host Policy

It is possible to control how several instances of the application with the same license
running on the same host will be counted and handled:

a. Floating User Licensing Model

Either License.OPTION_COUNT_ANY_HOSTS or License.OPTION_COUNT_DIFF_HOSTS

options can be explicitly specified for the license to instruct Licensing Server how to

count hosts. If neither option is specified the Licensing Server uses its default policy

and counts different hosts only.

b. Named User Licensing Model

The License.OPTION_DISALLOW_SEVERAL_COPIES_SAME_HOST option should be

explicitly specified for the license to instruct Licensing Server to disallow running
several instances of the application on the same host.

Checking-out Licenses for Offline Use

Sometimes it is feasible to let the users to continue utilizing Floating or Named licenses
offline without the need to connect to the Licensing Server (AKA briefcase mode). It can

be good for temporary working outside of the corporate network e.g. traveling when

there is no access to the Licensing Server.

To allow that scenario – a license should be checked out for offline use. It can be done

via ProtectionLauncher.checkoutLicense() method. A license must be explicitly

marked to allow checking it out. License’s checkoutPeriod property specifies the

number of days the license can be checked out and then used offline. Zero or negative

values for this property disable ability to use a license offline. It is possible to check if a

license can be checked out via the ProtectionLauncher.canCheckoutLicense()_

method.

After the license is checked out – the Licensing Server keeps license lock for that user

for entire allowed checkout period. That makes a checked out license to look like a kind

of temporary Named license for a limited period of time. License lock for the checked
out license will be automatically released by the Licensing Server after the end of

checkout period, making it available for other users. Though, it is possible to release the

checked out license anytime earlier by having a valid connection to the Licensing Server

and calling the ProtectionLauncher.terminateLicensePass() method.

Releasing Licensing Server Resources

A background thread responsible for the Licensing Server connectivity should or should

not be terminated depending on the following circumstances. If the application

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

44

completely exits by calling System.exit(…) method then the application should not be

concerned about this thread as it will be correctly terminated during the exit. This

approach is not suitable for server applications or components (e.g. Servlets or EJB’s) as
the server is typically never exits when the server’s application is terminated. In this

case all the background threads should be terminated explicitly during the application

shutdown by releasing the License Host via the call of the release() method.

Main/Supplemental License Model

It is possible to increase number of copies, Usage, CPU Core and Memory limits of a
license (Main License thereafter) using Supplemental licenses. To make it working a

Supplemental license should be issued and imported to Licensing Server. This will

immediately increase Number of Copies and, optionally, other aforementioned limits, of

the Main License by the corresponding values provided by a Supplemental license. No
main license redistribution or any other additional actions are required. If limits increase

should be temporary – corresponding Supplemental licenses should have expiration

date. To support this model no rebuild and update of client applications is required.

The following are requirements for Supplemental licenses:
 Must be a Commercial license

 Must have same Product and Product Edition as the main license

 May have expiration date

 Must have the License.PROPERTY_MAIN_LICENSE property having the License

Number of the Main License

 Must have the same User Licensing Model as the Main license
 Should have fake Licensing Server attribute to avoid using Supplemental licenses in

old versions of Licensing Server

 All other properties and attributes will be ignored.

N
o
te

Supplemental licenses cannot be allocated to the users; only Main Licenses can be.

If a Main License does not impose certain limits (e.g. it does not have a Memory Limit)

they will not be introduced by issuing a Supplemental License having such limits. In

that case such an introduction will be simply ignored.

Handling License Updates or Change Users Allocation

By default, license updates or change users allocation in Licensing Server will not be
propagated to the clients. So the users should either use the Licensing Assistant to re-

obtain license or there should be added some code to perform manual/automatic license

updates.

Since v4.8 support of license updates is added to the framework making it possible to

follow license or user allocation change. Result of the license update operation can be

either:

 License removal if no suitable license is available anymore.
 Updated license if new or changed license is available.

 Nothing if current license is up-to-date.

It is possible to listen for license updates events by utilizing extended

LicenseReaderListenerExt interface.

To enable automatic license updates - turn ON the ProtectionLauncher.

autoUpdateLicenseFromLicensingServer property (it is OFF by default to support

backward compatibility). If this option is turned ON - license update procedure will be

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

45

performed after each license read operation (on application startup in the most of the

cases). Note: this property will take effect only if Launcher uses an instance of

DefaultLicenseReaderIssueResolver (GUI) to resolve license reading issues.

Otherwise change of this property will be ignored.

If automatic updates cannot be setup for some reason or if license updates need to be

done on some event or schedule then the ProtectionLauncher.

updateLicenseFromLicensingServer() method should be used. If license update

succeeded – the license will be automatically re-read and re-checked by calling

ProtectionLauncher.checkLicense(true) method.

If all the Protection! initialization is done in source code (no Launcher is used) the
HeadlessLicenseReaderIssueResolver.updateLicenseFromLicensingServer(…)

method should be utilized to perform license updates. Note: license will not be reloaded

and rechecked after calling of that method; LicenseReader.getLicense(…, true) or

LicenseHost.checkLicense(true) must be called explicitly to apply that change.

Checking the Status of Licensing Server

In some cases a Licensing Server can go offline and continue staying offline for some

extended period of time; it would be either casual maintenance, hardware or software

failure. In that case, the users trying to work with their applications, which use Floating
or Named licenses, will see a generic “unable to connect” message. To improve the

customer experience Protection! includes an ability to let the users know what is going

on with the Licensing Server and when it is going to be back online.

It is done by placing a specially prepared server status XML file to some highly available

location and instructing Protection! to use the data from this file in case of inability to

lock licenses due to system errors or connection failure. Format of a server status file is

simple and straightforward:

<?xml version="1.0" encoding="UTF-8"?>

<resource_status status="Down">

 <message>Server is on maintenance</message>

 <long_message>

 <![CDATA[Server is down. Hard drive has failed. Service is

expected to be up by 5 AM.]]>

 </long_message>

</resource_status>

The status attribute of the resource_status element specifies the status of the server.

Any values other than “OK”, written in any case, mean that server is either offline or

malfunctioning. If the server is not OK – it is possible to specify the message and the

long_message attributes to better describe the issues and guide the users wait for a

certain time, use some workaround or go to a Licensing Server running on a different
location.

It is possible to specify location of a server status file:

1. In Developer Control Center via the “Edit Product | Licensing Server | Server Status

URL”.

2. In the code via a LicenseHost.getLicensingServiceSupport().

setServerStatusURL() call.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

46

6.9 License Kind

Protection! supports the following License kinds (defined by the License.licenseKind

property):

 License.KIND_NEW – licenses of that kind do not impose additional requirements to

be considered valid. All the licenses generated by pre v5 versions of Protection! will
be considered to be “new” ones.

 License.KIND_UPGRADE - licenses of that kind require existence of certain licenses of

previous versions to be considered valid.

For “upgrade” licenses it is possible to specify a minimum required version of previous

license and, optionally, required product editions via the prevLicenseMajorVersion,

prevLicenseMinorVersion and prevLicenseProductEditions properties of a License.

License Host checks “upgrade” licenses according to the following process:

1. Searching for the licenses of previous version:

a. In license backups.
b. In explicitly specified locations.

2. Iterating through found old licenses (if any) and comparing their Major and Minor

versions and, optionally, their Product Editions with corresponding values of a new

License.
3. Stopping with OK result if a suitable license is found.

4. Calling the LicenseHostIssueResolver.resolveLicenseCantUpgrade(…) method if

no suitable license of previous version was found. For a GUI application the License

Upgrade Wizard can be invoked to let the users specify a correct location of previous

version license.

5. Setting the License.STATE_INVALID to the license if no suitable license of previous

version was found and issue resolver was unable to resolve that issue.

It is possible to specify a list of locations to search for old licenses either in the code via

the LicenseUpgradeChecker instance like:

licenseHost.getLicenseUpgradeChecker().addPrevLicenseLocation(

new LicenseLocation(".DemoCalc2", "DemoCalc.key", true, true));

or by changing the product in the Developer Control Center via the “Edit Product |
Integration | License Upgrade” (certainly a Launcher should be rebuilt to apply

changes).

License Host uses an instance of LicenseUpgradeChecker to delegate checking of

“upgrade” licenses. It is possible to extend or change default check logic by providing a

custom implementation of the LicenseUpgradeChecker. This can be done by sub-

classing the LicenseUpgradeChecker class, changing the logic by overriding the

checkLicenseVersions method and setting a new instance of custom

LicenseUpgradeChecker to License Host via a setLicenseUpgradeChecker call.

If licenses of previous versions cannot be read due to encryption change then a custom

implementation of LicenseUpgradeChecker must be used. To handle encryption change

the initLicenseReader(LicenseReader) method should be overridden and its

implementation should properly initialize passed License Reader (by specifying proper

security algorithm and decrypt key bytes) to make it capable of reading licenses of

previous versions.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

47

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

48

Chapter 7

7. Working with the Licensing Server

The Licensing Server is an application responsible for distribution of the licenses and for

tracking of concurrent use of the licenses.

N
o
te

There are completely independent sub-systems for licenses distribution and for

concurrent models support. Therefore:
a) Licenses of any type and any user licensing model can be distributed by the

Licensing Server.

b) Licensing Server allows tracking of concurrent use of the licenses regardless how

those licenses were obtained.

7.1 Registering Licensing Server Connection

The application code should be aware of how to connect to the Licensing Server in order

to use its services. It can be done by registering specific provider implementation:

LicensingServiceProviderFactory.getInstance().registerProvider("RMI",

 RmiLicensingServiceProvider.class, “localhost", "", "", true);

The Licensing Server address attribute passed to the registerProvider()method

represents the default address that will be used to locate the Licensing Server for either

requesting licenses or for tracking concurrent licenses use. Default address attributes
will be used when the corresponding attribute is not specified within the license. The

login and password attributes are reserved for future use, therefore any passed values

will not be used. It is possible to register several providers.

N
o
te

If Protection! Launcher is used there is no need to make any changes in the source

code. The desired Licensing Service Provider and its attributes should be specified for

the product using the Edit Product | Integration | Licensing Server page in the

Products Screen of Developer Control Center. To apply all the changes the Launcher
should simply be re-built.

7.2 Using the LicensingServiceSupport

In most cases there is no need to write any code to use Licensing Server functionality as

Protection! already includes everything needed. Most of such functionality is

encapsulated in the LicensingServiceSupport class. An instance of this class is used

by the Licensing Assistant and the LicenseHost providing support for getting licenses

and handling of concurrent user models. This instance can be obtained by calling the

getLicensingServiceSupport()method of the License Host.

7.3 Direct Use of Licensing Service

While LicensingServiceSupport class is sufficient in most cases it is possible to use

Licensing Services directly to get greater control of the process.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

49

7.3.1 Getting Licensing Service

To get the Licensing Service an instance of the provider should be created by the factory

method:

LicensingServiceProvider provider = LicensingServiceProviderFactory.

 getInstance().createProvider(null, “localhost”, null);

It is possible to be notified about various provider events (e.g. when Licensing Service

obtained or license locked) by making proper implementation of the

LicensingServiceProviderListener interface and adding it to the listeners list of

provider by the addLicensingServiceProviderListener(…) method call.

When an instance of provider is created it can be used to produce a Licensing Service

instance that provides remote access to the Licensing Server functionality:

LicensingService service = provider.createLicensingService(

 licenseHost.getContext().createAttributes(true));

7.3.2 Using Licensing Services

By using the Licensing Service it is possible to:

 Get licenses.
 Acquire license locks.

 Confirm license locks.

 Release license locks.

 Check license locks availability.

Most of the LicensingService methods take a LicenseData.Request argument that

exactly describes a license to get or to lock. It is possible to use custom implementation

of this interface or utilize ready-to-use LicenseDataImpl.RequestImpl implementation.

All the LicensingService methods take a Map argument that defines system attributes

like the user and host name. Names of such attributes are defined as a set of

LicensingService.ATTR_ constants. It is possible to fill the system attributes using any

suitable API or all of the attributes can be easily obtained by the

licenseHost.getContext().createAttributes(true) call.

The confirmLicenseLock(…) and unlockLicense(…) methods take a unique ticket

argument that identifies the previously obtained license lock.

The LicensingService methods return an instance of the LicensingServiceResult

which provides execution result, message and optional ticket. The following are possible

result values:

 LicensingServiceResult.RESULT_OK - operation succeeded e.g. the license has

been successfully obtained or locked.

 LicensingFacadeResult.RESULT_ERROR - operation failed due to some business

reason (e.g. when no license is allocated to particular user). In such case the

message in the execution result typically contains an explanation or the reason for

execution failure. This message may be shown to the user to let him/her know what

went wrong.

 LicensingFacadeResult.RESULT_SYSTEM_ERROR - operation failed due to some

system error. In such a case the message in the execution result contains an error
message typically obtained from an exception. It is unnecessary to show this

message to the user as it may be meaningless to him/her; general error message

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

50

(e.g. “Unable to proceed. Try again or contact your system administrator for

assistance”) would be used instead.

 LicensingFacadeResult.RESULT_LICENSE_REVOKED – indicates that license lock

revocation has been requested by the Licensing Server administrator.

 LicensingFacadeResult.RESULT_SESSION_EXPIRED – means that the license lock is

expired and therefore the application no longer has its license lock.

The ticket property of the LicensingServiceResult identifies the obtained license lock

and should be passed to confirmLicenseLock(…) and unlockLicense(…) methods.

The lockLicense(…) method allows for the license lock acquisition. The Licensing

Server maintains all of the previously obtained locks for the given license and will decide
whether a new lock can be obtained based on the license number of copies and

according to the host counting policy. If the license lock is obtained then the application

may continue to work without limitations. If the license lock is not obtained the

application could wait for it; otherwise some of the application’s functionality limitations
should be applied or the application could simply exit.

The canLockLicense(…) method allows for querying the License Server to check that a

specific license lock could be obtained. If it succeeded, this method does not reserve any

future rights to obtain a license lock therefore sequential call of lockLicense(…) could

fail if another application obtains the license lock first.

The confirmLicenseLock(…) method allows for the Licensing Server notification that

the application which holds certain license lock is alive and this license lock is still in

use. When default Licensing Service implementation is used the application developer

should not be concerned with writing any code to confirm license locks. The default
implementation maintains all of the acquired license locks and confirms them as well.

The unlockLicense(…) method allows for the Licensing Server notification that certain

license lock is no longer needed and therefore it must be released. In most cases the

license lock should be released only when applications exit. If an application continues

to run after releasing the license lock the application developer should write appropriate
code to disable/limit access to the application’s functionality.

The getLicense(…) method allows for getting a license according to the requested

license attributes like product and version. If there is a license allocated to a particular

user this method will return an instance of the LicenseResult (that sub-classes the

LicensingServiceResult) and holds the license bytes attributes. If license bytes are

not null they contain the license that would be saved to the file known to the License

Reader (it can be obtained by a call of licenseReader.getLicenseFile()).

The following code sample shows how to get a license:

LicensingServiceProvider provider = LicensingServiceProviderFactory.

 getInstance().createProvider(null, “localhost”, null);

try {

 Map attrs = licenseHost.getContext().createAttributes(true);

 LicensingService service = provider.createLicensingService(attrs);

 LicenseResult result = (LicenseResult) aLicensingService.

 getLicense(LicensingServiceSupport.createRequest(productInfo), attrs);

 if (result.getResult() == LicensingServiceResult.RESULT_OK) {

 // use result.getResponce().getLicenseBytes() to save license

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

51

 }

}

Finally {

 provider.release();

}

7.3.3 Releasing Licensing Service

When Licensing Service is no longer needed it should be explicitly released by calling

releaseLicensingService() method of the provider. During release of the Licensing

Service all the resources including license locks acquired and maintained through this

service will be released as well.

When all the Licensing Services provided by provider (and provider itself) are no longer

needed the provider should be explicitly released by calling its release() method.

During release of provider all the resources including Licensing Services created by this

provider will be released as well.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

52

Chapter 8

8. Integrity Verification

The Integrity verification subsystem allows for checking and validation that the

designated key classes, resources or files of the application have not been changed. This

type of check is done by comparing current actual digest of those classes, resources, or

files with the original value stored somewhere in the application code, resources or files.

The IntegrityHostPro (or IntegrityHost for Protection! Std) class provides the

check(…) and checkStatic(…) methods allowing you to verify the application data and

code integrity. When an integrity violation is detected (a check() method returned

false value) some actions should be executed to prevent probably unauthorized use of

the application. There are no ready-to-use actions provided by Protection! because

proper handling of integrity violations is the sole responsibility of the developer and

specific to each application.

To start, the Integrity verification subsystem should be properly initialized. The
initialization data includes:

1. Classes, resources and files to check.

2. Digest algorithm.

3. Digest.

There are several implementations depending on how initialization data is loaded and

handled at runtime. This behavior is controlled by the runtime type attribute (Edit

Product | Integrity Check | Runtime Configuration Type).

T
ip

The Protection! Developer Control Center generates product specific code snippets to

allow for easy implementation of the Integrity verification into the custom

applications. Therefore all of the following code examples can be seen and easily
saved right from the code snippet section.

8.1 Source Runtime Configuration

When the “Source” Runtime Configuration is selected all the initialization data is

explicitly defined in the source code as a set of properly initialized constants.

The following example shows how to check integrity and print error message when

violation is detected:

final byte[] DIGEST = new byte[] {-38, 26, -111, 97, 52, -107, 120, -27,

118, -13, 77,

 -28, 23, 34, -48, -39, 104, -99, -66, 111};

final String[] DIGEST_ENTRIES = new String[] {

 "com/jp/samples/protection/DemoCalcProtectionSupport$1.class",

 "com/jp/samples/protection/DemoCalcProtectionSupport.class"

};

final String[] DIGEST_FILE_ENTRIES = null;

final int ALGORITHM = IntegrityHost.ALGORITHM_SHA_1;

if (! IntegrityHostPro.checkStatic(DIGEST_ENTRIES,

 DIGEST_FILE_ENTRIES,

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

53

 DIGEST,

 ALGORITHM) {

 System.err.println(“Integrity violation”);

}

The following are drawbacks of “Source” Runtime Configuration:

1. Any changes in the initialization data lead to corresponding changes in the source
code that in turn would require rebuild of the application.

2. It is almost impossible to support Integrity check for obfuscated code.

T
ip

 It is recommended to use either the “Resource” or the “File” Runtime Configurations in
most implementations. Usage of the “Source” Runtime Configuration could be justified

for very specific cases only.

8.2 Resource Runtime Configuration

When the “Resource” Runtime Configuration is selected all the initialization data is
explicitly defined in an application resource that could be loaded at runtime.

The following example shows how to load configuration from a resource, check integrity

and print error message when violation is detected:

IntegrityHostProConfigReader reader = new IntegrityHostProConfigReader();

reader.setSecurityAlgorithm("RSA - 512");

reader.setDecryptKeyBytes("…"); // actual data must be here

if (! IntegrityHostPro.checkStatic(reader, "DemoCalc.digest")) {

 System.err.println(“Integrity violation”);

}

8.3 File Runtime Configuration

When the “File” Runtime Configuration is selected all the initialization data is explicitly

defined in a file that could be loaded at runtime.

The following example shows how to load configuration from a file, check integrity and

print an error message when violation is detected:

IntegrityHostProConfigReader reader = new IntegrityHostProConfigReader();

reader.setSecurityAlgorithm("RSA - 512");

reader.setDecryptKeyBytes("…"); // actual data must be here

if (! IntegrityHostPro.checkStatic(reader, new File("DemoCalc.digest"))) {

 System.err.println(“Integrity violation”);

}

Both the “Resource” and the “File” Runtime Configurations have a number of
advantages over the “Source” configuration:

1. No need to rebuild the application to apply initialization data changes.

2. Ability to use build systems and scripts to automate incorporation of the initialization

data changes.
3. Obfuscated code support.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

54

Chapter 9

9. Licensing Using Protection! Backend

Protection! Professional provides the ability to embed the process of license getting and

activation functionality directly into the protected applications. This functionality via

remote connectivity deals with the Protection! backend deployed at the

vendors/publishers site. Though Protection! currently includes only the Web Services
based implementation it is possible to introduce other, different implementations e.g.

RMI or raw TCP/IP based. Because most of Protection! client (public) code never deals

directly with nor knows about actual implementation it is possible to start with the

default implementation and later add any custom one. The LicensingFacade interface

provides methods required for licenses acquisition and activation.

9.1 Registering the LicensingFacade Implementation

Actual implementation should be registered before the first use of Licensing Façade. The

following sample code demonstrates how to register a default Web Services based

implementation that will go to the vendor/publisher site and allow licensing of the Demo

Calculator application.

LicensingFacadeProvider.addProvider("WS", new LicensingFacadeWS.Provider(

 new URL(“http://www.vendordomain.com”+

 ”/ProtectionWS/services/LicensingFacade"),

 "DemoCalc", "DemoCalc"));

It is also suitable for debugging of applications to eliminate remote calls by starting

Protection! backend in-process. It can be done by the following call.

LicensingFacadeProvider.addProvider("Local",new

 LocalLicensingFacade.Provider(new File("products.dat"),

 "DemoCalc", "DemoCalc"));

N
o
te

If Protection! Launcher is used then there is no need to make any changes in the

source code. The desired Licensing Façade Provider and its attributes should be

specified for the product using the Edit Product | Integration | Façade page in the

Products Screen of the Protection! Developer Control Center. To apply all the changes

the Launcher must be re-built.

After completion of the registration process the application is able to communicate to

the backend to request or activate licenses. For example, the application can now

request evaluation licenses using Licensing Assistant Wizard.

N
o
te

 If the registration is missing or incomplete the Licensing Assistant and the License

Activation Assistant Wizards hide all their functionality that depends on the Licensing

Façade.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

55

9.2 Getting the LicensingFacade

The Licensing Facade Provider provides the actual implementation. The following code

LicensingFacadeProvider.getInstance().getLicensingFacade() allows obtaining

the default registered implementation. It is possible to get specific implementation if

several implementations are known to the application by calling of

LicensingFacadeProvider.getInstance(“WS”).getLicensingFacade() and providing

implementation’s name e.g. “WS”.

9.3 Using the LicensingFacade

By using the Licensing Façade it is possible to:
 Get commercial or evaluation licenses for requested products.

 Get commercial license by Serial Numbers.

 Activate licenses.

 Deactivate licenses (at the same time notifying vendors about deactivation)
 Get version of backend implementation;

Most of LicensingFacade methods take as a parameter an instance of the Customer

that holds the customer’s data who is requesting and/or activating the license. Other

important parameters are login and password. These parameters provide credentials

that may be required by Protection! backend to authorize the customer in order to

proceed with the requested operations.

It is possible to send any number of arguments to the backend by putting them to a

HashMap instance and further passing this instance to the LicensingFacade methods

as an argument. Note, keys and values which can be sent should be of the String type

only. By default, current Locale name is passed as LicensingFacade.ARGUMENT_LOCALE

argument allowing backend to generate localized messages for the client applications.

The LicensingFacade.ARGUMENT_ACTIVATION_LOCK_KEY and

LicensingFacade.ARGUMENT_ACTIVATION_KEY arguments are passed by

LicensingWizardPro implementation during getting licenses to provide a one step

activation process.

The LicensingFacade methods return instance of LicensingFacadeResult that carries

execution result, license bytes and an optional message.

If the execution result is LicensingFacadeResult.RESULT_OK this means that the

license has been successfully obtained or activated. If license bytes are not null they

contain the license that should be saved to the file known to the License Reader (it can

be obtained by a call of licenseReader.getLicenseFile()). If license bytes are null

the license has been delivered to the user using a different way of delivery (e.g. e-mail)

and the user is responsible for getting the license himself/herself. In such a case the

message in the execution result typically contains instructions that may be shown to the

user to aid him/her on how to obtain and apply the license.

If the execution result is LicensingFacadeResult.RESULT_ERROR it means that either

license getting or activation procedures have failed due to some reason (e.g. when the

requested license already has been issued). In such a case the message in the

execution result typically contains an explanation or the reason for execution failure.

This message may be shown to the user to let him/her know what went wrong.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

56

The following code example shows how to use Licensing Façade to request a license.

public boolean obtainLicense(LicenseReader aLicenseReader,

 LicenseInfo aLicense, Customer aCustomer,

 String aLogin, String aPassword) {

 boolean result = false;

 LicensingFacadeResult requestResult = null;

 try {

 LicensingFacade licensingFacade = LicensingFacadeProvider.

 getInstance().getLicensingFacade();

 if (licensingFacade != null) {

 requestResult = licensingFacade.getLicense(aLicense, aCustomer,

 aLogin, aPassword, null);

 if (requestResult.getResult() == LicensingFacadeResult.RESULT_OK)

 {

 byte[] licenseBytes = licenseBytes = requestResult.

 getLicenseBytes();

 if (licenseBytes != null) {

 /** @todo add code to save license here */

 } else {

 System.out.println(requestResult.getMessage());

 }

 result = true;

 } else {

 System.err.println("Unable to get license: "+ requestResult.

 getMessage());

 }

 } else {

 System.err.println("Unable to get LicensingFacade");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 return result;

}

9.4 Using the LicensingFacade to Implement Licensing of the Web
Applications

Protection! provides ready to use components and Wizards to add the ability to get and

activate licenses for any Swing GUI applications. The GUI developers should only be

concerned with the proper Protection! classes initialization. Although there is no such

ready-to-use implementation for Web applications it is quite easy to make such an
implementation using the following scenario:

1. Add the required code to the headless code snippet generated by the Protection!

Control Center to disable or constrain Web application functionality and to eliminate

unlicensed use.
2. Implement Web registration form to allow entering user’s data (name, e-mail etc.),

optional Serial Number or specifying the need to activate a license.

3. Implement code to process Registration Form submission and prepare data required

to use Licensing Façade (e.g. create an instance of Customer that holds customer

information).

4. Use Licensing Façade to get or activate a license and save it to the file known for the

License Reader.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

57

5. Use the usual check license sequence to check the license.

When the customer wants to use such a Web application he/she should either place a

valid license to the required location or use Registration Form to get an evaluation

license, enter Serial Number to get a commercial license or initiate the license activation
process.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

58

Chapter 10

10. Deploying Protected Applications

For best results, use the Archive Builder included with your IDE or provided by JDK to

create the .zip or .jar file(s) for use in deploying your target application, Applet, or

JavaBean component.

To the extent that you are allowed to redistribute third-party redistributables under the
terms of your license, you may redistribute these classes/resources in any of the

formats subject to the restrictions in the third-party license agreement. Refer to third-

party-license.html for the details regarding redistribution.

The following topics outline redistributables needed to be used to deploy protected

applications.

10.1 Required Redistributables

For the purpose of the license(s) included with this product, the redistributables for the
Protection! Licensing Toolkit are located in the <install_dir>/lib folder and defined as:

1. Protection.jar - Protection! core.

2. bcprov-jdk14-136.jar- Bouncy Castle Crypto API.

To the extent that you are allowed to redistribute redistributables under the terms of
your license, you may redistribute these classes in any of the following formats subject

to the restrictions in the license agreement.

1. Protection! Core

a) As the entire Protection.jar file.
b) As content of Protection.jar bundled (and optionally obfuscated) into your

application archives.

2. Bouncy Castle Crypto API

a) As the entire bcprov-jdk14-136.jar file.

Note: It is strongly recommended that you include the content of Protection.jar into

your applications archive and obfuscate it as a whole using some powerful obfuscator to

maximize efforts needed to reverse engineer and understand licensing and protection
logic.

10.2 Redistributables to allow support for “Named User” licensing model that
locks the license to CPU or motherboard ID's. (Optional)

Protection! makes use of OSHI library to obtain aforementioned attributes. For the

purpose of the license(s) included with this product, the redistributables for the “Named

User” licensing model is defined as the files located in the /<install_dir>/lib directory:
a) jna-4.5.2.jar

b) jna-platform-4.5.2.jar

c) oshi-core-3.7.2.jar

d) slf4j-api-1.5.10.jar
e) slf4j-jdk14-1.5.10.jar

../../Gregory%20Ledenev/Local%20Settings/Temp/Temporary%20Directory%201%20for%20Protection_Developers_Guide_rev1.zip/lib/third-party-license.html

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

59

To the extent that you are allowed to redistribute redistributables under the terms of

your license, you may redistribute these classes/resources in any of the formats subject

to the restrictions in the third-party license agreement. Refer to third-party-license.html

for the details regarding redistribution

10.3 Redistributables to Work with Protection! Web Services Application
(Optional)

For the purpose of the license(s) included with this product, the redistributables to allow

for acquisition and/or activation of the licenses via Protection! Web Services Application

are defined as the following files located in the <install_dir>/lib folder:

f) axis.jar
g) axis-ant.jar

h) commons-discovery.jar

i) commons-logging.jar

j) jaxrpc.jar
k) log4j-1.2.8.jar

10.4 Redistributables to Allow Support for Named User Licensing Model
(Deprecated)

For the purpose of the license(s) included with this product, the redistributables for the

Named User licensing model is defined as the jug.jar file located in the <install_dir>/lib

folder and the set of native libraries located in the <install_dir>/native_lib folder.

Note: By default, native libraries need to be located in the ../native_lib folder relative to

your applications root. However, it is possible to specify another location using

setNativeLibFolder(…) method of LicenseHostPro.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

60

Chapter 11

11. Protection! Backend

In addition to the developer’s ability to generate licenses using Protection! Control

Center it is also possible to employ Protection! API to perform these and other tasks
programmatically. This functionality can be used to build Protection! Backend able to

process a license request by the client applications and to create applications capable of

mass licenses generation, etc.

11.1 Working with Products Storage

The majority of Protection! Backend tasks deal with license generation and therefore
require an explicit knowledge of a particular product for which licenses must be

generated. The Products Storage provides all of the required information for the above

task as it holds products and allows you to query product attributes. Before the first use

it should be properly initialized e.g. by loading from a file:

ProductsStorage productStorage = new ProductsStorage();

FileInputStream fileInputStream = new FileInputStream("products.dat");

Try {

 productsStorage.load(fileInputStream);

} finally {

 fileInputStream.close();

}

If read protection is turned on for a particular Products Storage then the valid password

must be provided before such product storage could be loaded. This can be done by

making a proper implementation of the PasswordResolver interface and assigning a

new instance of it to the Products Storage:

productStorage.setPasswordResolver(new ProductsStorage.PasswordResolver(){

 public String resolvePassword() {

 return “1234”;

 }

 public void passwordMismatch() {

 System.err.println(“Password is invalid”);

 }

});

11.2 Encoding and Writing Licenses

11.2.1 Licensing Protection! Backend API

To get access to this API a valid Protection! Backend Deployment license should be

available at the known location.

By default, Protection! tries to find a Backend Deployment license named

protection.backend.license in the user’s <HOME>.protection4 (e.g. "C:\Documents and

Settings\<User Name>\.protection4" for Windows) folder first.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

61

N
o
te

 Evaluation or commercial licenses for Protection! Developer allows using Protection!

Backend API for development purposes. To allow it the protection.license should be

copied and renamed to protection.backend.license.

If the license is not found then Protection! tries to get it from the root of the application
archive or class path. This default search sequence can be changed by setting system

property ProtectionFactory.PROPERTY_LICENSE_WRITER_SEARCH_LICENSE_RESOURCE

to the true value:

System.setProperty(

 ProtectionFactory.PROPERTY_LICENSE_WRITER_SEARCH_LICENSE_RESOURCE,

 “true”);

N
o
te

 Protection! Web Services Application will always change the default license search
sequence to allow first for discovery of a bundled license.

While the user’s HOME folder seems to be a reasonably good location for a Backend
Deployment license it is possible to specify another desired location of the license by

setting system property ProtectionFactory.PROPERTY_LICENSE_FOLDER to let

Protection! know exactly where the license should be located:

System.setProperty(ProtectionFactory.PROPERTY_LICENSE_FOLDER,

 “.demoCalc”);

N
o
te

 The specified license folder always denotes the relative path to the user HOME folder.

The Backend Deployment license file within the application archive or class path can also
be placed to some folder that differs from the root one. The system property

ProtectionFactory.PROPERTY_LICENSE_RESOURCE_FOLDER allows specifying the license

location in such a case:

System.setProperty(ProtectionFactory.PROPERTY_LICENSE_RESOURCE_FOLDER,

 “/com/jp/samples/protection/”);

It is possible to change the Backend Deployment license name (protection.license by
default) e.g. to hide the existence of Protection! by specifying a new license name as a

value for ProtectionFactory.PROPERTY_LICENSE_NAME system property:

System.setProperty(ProtectionFactory.PROPERTY_LICENSE_NAME,

 “DemoCalc.bin”);

11.2.2 Using License Writer

The LicenseWriter class provides the ability to encode passed license and then save it

to the specified file or output stream. Once created, the instance of LicenseWriter

should be properly configured by specifying encryption key bytes that can be obtained

by reading the appropriate product properties.

The write(…) methods should be used to encode and write licenses. These methods

take a License instance that precisely describes the license to be written as the first

parameter and file or output stream as the second one.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

62

It is possible to skip license encryption (for debugging purposes only) during license

writing by calling of setSkipEncryption(true) method. Certainly LicenseReader

object in the client application can be instructed to skip encryption too to enable reading

of unencrypted licenses.

To increase efforts required to break protection none of the LicenseWriter methods

show any error output or throw any exceptions. It is possible to change this behavior for

development and debugging purposes only by calling setVerbose(true) method.

The following code fragment shows how to encode and write a sample license to the
DemoCalc.key file.

// create a license and specify its attributes

LicenseImpl license = new LicenseImpl();

license.setProduct("DemoCalc");

license.setLicenseNumber("1");

license.setLicenseType(License.TYPE_COMMERCIAL);

// create and configure license writer, encode and write license

LicenseWriter licenseWriter = new LicenseWriter();

licenseWriter. setEncryptKeyBytes (new byte[]{…}); // specify license key

bytes here

licenseWriter.writeLicense(license, new File("DemoCalc.key"));

The LicenseWriter does provide all required low-level API to encode and write licenses.

However, it is quite hard to properly configure it as appropriate product should first be

located and then read from the corresponding product storage to obtain encryption key

bytes. This is why developers should never deal with LicenseWriter directly in the

majority of cases. The LicenseWriterFacade class greatly simplifies the process of

LicenseWriter configuration and also provides several other very helpful methods.

The LicenseWriterFacade object uses associated products storage to locate required

products and to create and configure corresponding LicenseWriter instances to provide

license encoding and saving mechanisms. Other major functionality of

LicenseWriterFacade is its ability to function as a factory capable of creation of valid

licenses for a specified product, product edition, license types etc. While it is possible to

fully configure license instances programmatically it is recommended and much better to

use createLicense(…) methods of LicenseWriterFacade as these methods will take

care of the proper license initialization (e.g. putting correct features set for specified
product and product edition).

The following code fragment shows how easily a developer could achieve the tasks of

creation, putting activation key, encoding and writing a sample license to the

DemoCalc.key file.

Try {

 LicenseWriterFacade licenseWriter =

 new LicenseWriterFacade(new File("products.dat"));

 LicenseImpl license = licenseWriter.createLicense("DemoCalc", "1",

 License.TYPE_COMMERCIAL);

 license.setLicenseOptions(License.OPTION_REQUIRE_ACTIVATION);

 license.putProperty(License.PROPERTY_ACTIVATION_KEY,

 "LZL2P-TXDJE-RE3F1-GKOQ5-Q4TJA");

 licenseWriter.writeLicense(license, new File("DemoCalc.key"));

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

63

} catch (Exception ex) {

 ex.printStackTrace();

}

11.3 Validating Deactivation Result

Result of the deactivation process is represented by the deactivation key which the user

should provide to the vendor (along with the product name and the activation key). The
deactivation key should be checked at the vendor side to ensure that the deactivation

process has actually been completed. This can be done via the communication with the

Protection! Backend or with the help of the corresponding Protection! Sales Control

Center functionality.

It is also possible to use Protection! API to check the deactivation key:

String activationKey = ...; // provide activation key

String deactivationKey = ...; // provide deactivation key

Product product = productsStorage.getProduct(“DemoCalc”);

if (deactivationKey.equals(LocalLicensingFacade.

 getDeactivationKey(product, activationKey, true, true))) {

 // deactivation successfully completed

} else if (deactivationKey.equals(LocalLicensingFacade.

 getDeactivationKey(product, activationKey, false, true))) {

 // deactivation failed

} else {

 // error e.g. improper deactivation and/or activation keys

}

11.4 Working with Serial Numbers

Protection! backend provides a complete set of API to support Serial Numbers

generation and parsing.

N
o
te

 At least one License Alias must be created in the Product Storage to allow working

with Serial Numbers.

11.4.1 Serial Numbers Generation

A properly initialized Products Storage is required to generate the Serial Numbers. A

new instance of Serial Number must be created using the Products Storage:

ProductsStorage productsStorage = new ProductsStorage();

productsStorage.load(new FileInputStream(new File("products.dat")));

SerialNumber2 serialNumber = productStorage.getSerialNumber2();

The License Number, License Alias identifier and Number of Copies attributes should be

specified for Serial Number:

serialNumber.setLicenseNumber(12345);

LicenseAlias alias = productStorage.getLicenseAlias("test");

serialNumber.setAlias(Long.parseLong(alias.getAlias()));

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

64

serialNumber.setNumberCopies(10);

And finally textual representation of Serial Number can be obtained:

String textSN = serialNumber.encode();

This textual representation can be sent to the customer or printed in the product box.

11.4.2 Serial Numbers Parsing

The main purpose of Serial Numbers is the ability to restore particular licenses using a

textual representation of them. It can be easily done using a properly configured

LicenseWriterFacade:

LicenseWriterFacade writerFacade =

 new LicenseWriterFacade(new File("products.dat"));

LicenseImpl license = writerFacade.

 createLicenseForSerialNumber(“BUK3X-9AY4Z-O7NM2-D65WG-UKRXC”);

Restored license can be delivered to the customer by any suitable way e.g. by e-mail.

11.5 Orders Parsing

Protection! includes license order parsing functionality which allows for extraction of the

license and customer information directly from the order notification received from

online E-Commerce stores (i.e., Element 5).

The OrderParserFacade class represents the entry point to the license orders parsing

system. It provides a set of convenient methods for system initialization, order parsing

and listening for events that occurred during the process. Properly initialized Products

Storage should be passed to the OrderParserFacade constructor so it is knowledgeable

of the available Products and License Aliases:

ProductsStorage productsStorage = new ProductsStorage();

FileInputStream fileInputStream = new FileInputStream("products.dat");

try {

 productsStorage.load(fileInputStream);

} finally {

 fileInputStream.close();

}

OrderParserFacade facade = new OrderParserFacade(productsStorage);

The result of a successful license order parsing process is always represented by an

instance of OrderParserFacade.Result class per each parsed order. Each

OrderParserFacade.Result instance holds License Alias, License and Customer that

correspond to information obtained from the license order.

It is possible to get notified about progress of license order parsing by making proper

implementation of OrderParserListener interface and adding it to the list of listeners

of OrderParserFacade instance.

In addition to listening events the getErrors() method allows getting the list of errors

which occurred during the last license order parsing operation. This list contains the

OrderParser.Error instances which contains the error message and its details.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

65

11.5.1 Single Order Parsing

There are several parse(…) methods in the OrderParserFacade implementation

responsible for parsing a single license order.

If several different order formats needs to be supported, then the parse(InputStream)

method should be used. It accepts license order content as an input stream and walks

through all of the registered parsers to find one that is able to parse the supplied order.

If no suitable parser is found the method simply returns null value. If a parser is found,

then it will be used to parse the license order and utilize parsed data to prepare

OrderParserFacade.Result instance by finding License Alias, creating corresponding

License and filling-in the Customer information.

FileInputStream inputStream = new FileInputStream("order.txt");

try {

 OrderParserFacade.Result result = facade.parse(inputStream);

} finally {

 fileInputStream.close();

}

If the order format is known the parse(InputStream, String) or

parse(InputStream, OrderParser) methods can be used. The first method uses a

parser specified by its unique identifier; the second method uses an explicitly specified

parser. The following code illustrates how to parse an order by using the generic order

format:

FileInputStream inputStream = new FileInputStream("order.txt");

try {

 OrderParserFacade.Result result = facade.parse(inputStream,

 “#Generic License Order#”);

} finally {

 inputStream.close();

}

11.5.2 Bulk Orders Parsing

It is possible to (not recursively) parse all the orders found in some folder. The

parse(File, List) method provides this ability. It takes a folder to parse orders from

as the first parameter and list to hold found errors as the second parameter and returns

a list of OrderParserFacade.Result instances which represents all the parsed orders.

The following example illustrates how to parse all the orders from the specified folder

and dump them to the standard output in comma delimited form:

List errors = new ArrayList();

List parseResults = facade.parse(new File("Incoming/Orders"), errors);

StringBuffer stringBuffer = new StringBuffer();

facade.dump(parseResults, stringBuffer);

System.out.println(stringBuffer.toString());

11.5.3 Using Generic Order Format

If your current order structure is not yet supported by Protection! order parsing

functionality and you would like Protection!’s assistance in order parsing, then you can
modify your current order to fit the generic format outlined bellow and then supply it to

Protection! for automated parsing.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

66

Product = 1234

Number of licenses = 1

License number = 1234

Net sales = USD 1000.00

Total = USD 900.00

Payment = Credit Card: Visa

Salutation = MR.

Title =

Last Name = Doe

First Name = Joe

Company = Acme Corporation, Inc.

Street = 1 Acme way

ZIP = 90012

City = Acme Industrial City

Country = USA

State / Province = California

Phone = 555-555-1212

E-Mail = john@acme.com

#Generic License Order#

In this format the following tags are very important:

1. The “Product” tag specifies License Alias that corresponds to the license that has

been sold.

2. The “#Generic License Order#” tag specifies name of the generic format.

Note all the generic tags should have exactly the same names as stated above e.g.

“Product =”

but can be placed in other different order sequence.

11.6 Working with Protection! WS Application

Protection provides default implementation of licensing backend as a Web application
that exports its functionality via Web Services. This application can be deployed to and

hosted on any Web container that supports Servlet 2.3 and JSP 1.2 specifications e.g.

Apache Tomcat 5.x.

Use of Web Services provides the ability for third-party developers, vendors or resellers

to generate or activate licenses using tools of their choice e.g. Borland Delphi or Visual

Basic .NET. They should use the appropriate WSDL descriptor that describes Licensing

Façade interface. Developers should also generate proper implementation or support

code to access the Licensing Façade functionality. This descriptor can be easy obtained
using ?wsdl command. For example the following URL allows for obtaining WSDL

descriptor for Licensing Façade deployed at jProductivity Web site:

http://services.jproductivity.net:8080/ProtectionWS/services/LicensingFacade?wsdl

http://services.jproductivity.net:8080/ProtectionWS/services/LicensingFacade?wsdl

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

67

While it is possible to use virtually any language or tool to access the Protection!

backend, Java applications that use Protection! for licensing should not directly deal with

Protection! Web Services. This is because all of the necessary code is already included in

the Protection! framework where it is very easy to request or activate licenses without
the need to know or understand Web Services.

The only required step is getting a Licensing Façade instance by call of

LicensingFacadeProvider.getInstance().getLicensingFacade() method and

further utilization of the LicensingFacade methods to get or activate licenses.

11.6.1 Configuring Protection! WS Application

Though Protection! WS Application represents a valid and functional Web application it

lacks several things required for proper license generation and activation:

 Valid Protection! Backend Deployment license. This license is required in order to

provide full commercial licensed use of the Protection! backend. Protection!

Professional Edition does include a Protection! Backend Developer License that can
be used for development purposes only. To enable full production deployment and

usage of Protection! Backend a Protection! Backend Deployment License must be

purchased.

 Products Storage file. This file is required in order to let the Protection! backend
know which licenses can be generated for which products and to supply proper keys

for licenses encoding.

 Backend configuration options to fine tune its functionality.

Protection! Control Center provides familiar GUI front-end allowing configuration of

Protection! Web Services Application without the need to understand Web development

practices and approaches. This configuration can be done via Licensing Façade

Configuration Dialog. This dialog can be invoked using the Edit | Licensing Façade Config
menu item at the Products Screen.

N
o
te

Although there is an ability to specify database connection attributes there, these

attributes can only be used by specific plug-in implementation. These attributes

provide necessary how-to for database connection for the plug-in. It is sole
responsibility of application developers to design actual code to get a database

connection and to utilize database to handle any licensing tasks.

Please consult “Protection! User Guide” for more information about the process of
configuring Protection! Web Services Application.

11.6.2 Deploying Protection! Web Services Application to Compatible Container

When Protection! Web Services Application is properly configured with the help of

Licensing Façade Configuration Dialog it should be deployed to the compatible Web

container.

The first step is getting a ready-to-deploy Web application (.war file). This can be done

either:

 In Protection! Control Center by invoking the File | Generate WS menu item at the

Products Screen.

 By using the command-line Protection! Builder Utility. This utility can be also used in
various build systems or scripts to automate the build process.

Built Protection Web Services Application includes the following parts:

1. Protection! Backend Deployment license.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

68

2. Products Storage.

3. Backend and Web Services Configuration.

4. Core libraries.

The next step is deploying the configured application to a compatible Web container e.g.
to Apache Tomcat 5.x. Please refer to documentation of the corresponding Web

container to learn how to deploy Web applications. When Protection! Web Services

Application has been deployed and is up and running it is ready to serve clients by

allowing them to get or activate licenses.

The simple test that allows developers to see that Protection! Web Services Application

is up and running is done by opening the Licensing Façade URL with the ?wsdl command

in your Web browser. For example the following link:

 http://services.jproductivity.net:8080/ProtectionWS/services/LicensingFacade?wsdl

shows WSDL descriptor of running Licensing Façade at jProductivity Web site.

The current implementation does not provide any ability to configure an already

deployed Protection! Web Services Application. To do so the application should be

reconfigured and deployed/re-deployed again. This allows publishing changes of the

product storage (e.g. products addition, removal or modifications) or changes of any
other options.

11.6.3 Extending Protection! Web Services Application

Protection! Web Services Application provides all of the functionality required to quickly

start custom application development. It is possible to prepare and deploy a Web

application capable of license generation and activation for custom applications in

several mouse clicks and in just a few minutes.

However, it is also possible to extend functionality of Protection! Web Services

Application by writing a plug-in which could add specific business logic. Such business

logic can include, but is not limited to the following:

 Having multiple accounts identified by “login” parameter. Each account can define
access permissions for a particular product.

 Logging all successful and failed attempts to get or activate licenses.

 Deciding whether it is possible to get or activate a certain license for each particular

customer.
 Deciding how to deliver generated or activated licenses.

There are two types of plug-ins supported by Protection! – extension and delegate.

Writing any types of plug-ins does not require knowledge or understanding of the Web
or Web Services development and therefore greatly simplifies plug-ins implementation.

Writing of delegate plug-in requires the entire implementation of the LicensingFacade

interface. Even though the delegate plug-in allows full control over the process of

issuing licenses and their activation, in most of the cases it is impractical to develop

such plug-ins.

Writing Extension Plug-in

Extension plug-in should implement the LicensingFacadeExtension interface. It allows

a quite easy extension of Protection! Web Services Application by allowing contribution

to certain required steps of licenses generation and activation processes only.

http://services.jproductivity.net:8080/ProtectionWS/services/LicensingFacade?wsdl

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

69

Default implementation calls extension's methods in the following sequence during the

license acquisition:

1. login(…) – this method should authenticate and authorize the incoming request.

2. checkGetLicenseEnabled(…) – this method allows deciding whether it is possible to

get a certain type of license.

3. onGetLicense(…) – this method allows deciding whether it is possible to push this

license to a particular customer, modifying license attributes before it will be
delivered to the customer and logging such an attempt.

4. deliver(…) – this methods allows deciding how to deliver the generated license to

the customer.

Default implementation calls extension's methods in the following sequence during the

license activation:

1. login(…) – this method should authenticate and authorize incoming request.

2. checkActivateLicenseEnabled(…) – this method allows deciding whether it is

possible to activate a certain type of license.

3. onActivateLicense(…) – this method allows deciding whether it is possible to

activate this license for a particular customer, modifying license attributes before it

will be delivered to the customer and logging the attempt.

4. deliver(…) – this methods allows deciding how to deliver activated license to the

customer.

Note execution of the sequence above will be stopped if any method calls are failed.

login(…) Method Implementation

This method authenticates and authorizes the attempt to get or activate a license. Caller

credentials (login and password) should be checked to ensure that the caller is known to
the system. License information can be used to ensure that the caller has rights to get

or activate a certain type of license.

It should return a session object if the caller is authorized to make the requested

operation or null otherwise. Therefore the session object by default holds the specified

login, arguments and operation. Custom implementations can return custom session
objects that could carry out any additional information.

Simple method implementation may rely on login name and password passed in

configuration. In this case the code may look like the following:

public LicensingFacadeSession login(LicenseBase aLicenseInfo,

 String aLogin, String aPassword, Map anArguments, int anOperation) {

 // obtain façade passed to the init(…) method

 LocalLicensingFacade f = getLocalLicensingFacade();

 return f.isLoginEnabled(aLicenseInfo, aLogin, aPassword) ?

 newLicensingFacadeSession(aLogin, f.getSerialNumber(aLicenseInfo),

 anArguments, anOperation) : null;

}

The real-life implementation probably should deal with some persistent storage e.g.

database to get authentication and authorization data.

checkGetLicenseEnabled(…) Method Implementation

This method checks whether it is possible to get licenses according to the specified

license information and operation code (stored in the session). Simple method

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

70

implementation may rely on permissions passed in configuration. In this case the code

may look like:

public boolean checkGetLicenseEnabled(LicensingFacadeSession aSession,

 LicenseBase aLicenseInfo) {

 // obtain façade passed to the init(…) method

 LocalLicensingFacade f = getLocalLicensingFacade();

 return f.isGetLicenseEnabled(aSession, aLicenseInfo);

}

The real-life implementation probably should analyze some authorization data stored in

the session during execution of login() method.

checkActivateLicenseEnabled (…) Method Implementation

This method checks whether it is possible to activate licenses according to the specified

license information. Simple method implementation may rely on permissions passed in

configuration. In this case the code may look like the following:

public boolean checkActivateLicenseEnabled(

 LicensingFacadeSession aSession) {

 // obtain façade passed to the init(…) method

 LocalLicensingFacade f = getLocalLicensingFacade();

 return f.isActivateLicenseEnabled();

}

The real-life implementation probably should analyze some authorization data stored in

the session during execution of login() method.

checkDeactivateLicenseEnabled (…) Method Implementation

This method checks whether it is possible to deactivate licenses according to the

specified license information. Simple method implementation may rely on permissions

passed in configuration. In this case the code may look like the following:

public boolean checkDeactivateLicenseEnabled(

 LicensingFacadeSession aSession, String aLicenseNumber,

 String aProductID) {

 // obtain façade passed to the init(…) method

 LocalLicensingFacade f = getLocalLicensingFacade();

 return f.isDeactivateLicenseEnabled();

}

The real-life implementation probably should analyze some authorization data stored in

the session during execution of login() method.

onGetLicense() Method Implementation

This method allows inclusion into the process of the license generation. Implementation
of the method can:

 Change any license attributes.

 Break license generation by throwing an exception due to system error or

misconfiguration.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

71

 Decide whether it is possible to continue with the license generation process or

should the process be broken by providing a meaningful message and/or the

LicensingFacadeResultBase.RESULT_ERROR for the method result.

 Specify how the license should be delivered by identifying delivery type for the

method result.

The following code snippet shows how this method would be implemented. It adds code
to check whether a license has not been already issued for a particular customer and to

log the issued license on success. This can be done by introducing

isLicenseAlreadyIssued(…) method that can inspect previously issued and logged

licenses, by querying database and by calling this method as part of

onGetLicense(…)method implementation, for example.

protected void logIssuedLicense(LicenseImpl aLicense, Customer aCustomer){

 /** @todo add code to log issued license to database */

}

protected boolean isLicenseAlreadyIssued(LicenseImpl aLicense,

 Customer aCustomer) {

 /** @todo add code to check database for license issuing */

 return false;

}

public LicensingFacadeResultBase onGetLicense(LicensingFacadeSession

 aSession, LicenseImpl aLicense, Customer aCustomer) {

 if (isLicenseAlreadyIssued(aLicense, aCustomer)) {

 return new LicensingFacadeResultBase(

 LicensingFacadeResultBase.RESULT_ERROR,

 "The requested license has already been issued");

 } else {

 logIssuedLicense(aLicense, aCustomer);

 return new LicensingFacadeResultBase(LicensingFacadeResultBase.

 RESULT_OK);

 }

}

onActivateLicense(…) Method Implementation

This method allows inclusion into the process of license activation. Implementation of
the method can:

 Change license attributes.

 Break license activation by throwing an exception due to system error or

misconfiguration.

 Decide whether it is possible to continue with the license activation process or should
the process be broken by providing meaningful message and/or the

LicensingFacadeResultBase.RESULT_ERROR for the method result.

 Specify how the license should be delivered by identifying delivery type for the

method result.

The following code snippet shows how this method would be implemented. It checks if
the license was not activated before or if the number of activations does not exceed the

number of copies allowed and finally logs activated license on success.

protected void logActivatedLicense(LicenseImpl aLicense,

 Customer aCustomer) {

 /** @todo add code to log activated license to database */

}

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

72

protected boolean isLicenseAlreadyActivated(LicenseImpl aLicense,

 Customer aCustomer) {

 /** @todo add code to check database for license activation records */

 return false;

}

public LicensingFacadeResultBase onActivateLicense(

 LicensingFacadeSession aSession, LicenseImpl aLicense,

 Customer aCustomer, String anActivationKey) {

 if (isLicenseAlreadyActivated(aLicense, aCustomer)) {

 return new LicensingFacadeResultBase(

 LicensingFacadeResultBase.RESULT_ERROR,

 "The license has already been activated");

 } else {

 logActivatedLicense (aLicense, aCustomer);

 return new LicensingFacadeResultBase(LicensingFacadeResultBase.

 RESULT_OK);

 }

}

deliver() Method Implementation

This method provides support to deliver issued or activated licenses to the customer.

The current implementation provides two types of delivery:
 Online – when the license is returned to the caller as an array of bytes.

 E-mail – when the license is sent to the customer’s specified e-mail address.

Method implementation should write the license to an array of bytes and assign it to the

method's result for an online delivery type. For other delivery types the license should
be distributed to the user by some other methods (e.g. by sending the license as an

attachment to the e-mail message). In such a case a meaningful message should be

specified for the method's result to instruct the user on how to find the delivered license

(e.g. "Please check your mailbox for a license").

Let’s add sample code to include a custom subject and text for e-mail messages used

for delivery of licenses by e-mail. This can be done by adding code for sending licenses

by e-mail with a custom subject and text.

protected String getLicenseMessageSubject() {

 /** @todo add actual implementation here */

 return "License is here";

}

protected String getLicenseMessageText() {

 /** @todo add actual implementation here */

 return "Please see your license attached";

}

public LicensingFacadeResult deliver(LicensingFacadeSession aSession,

 int aDeliveryType, License aLicense, Customer aCustomer) {

 LicensingFacadeResult result = null;

 LicensingFacadeDelivery delivery = getLocalLicensingFacade().

 getDelivery(aDeliveryType);

 if (delivery == null)

 throw new IllegalStateException(

 "Unable to obtain delivery for delivery type: "+aDeliveryType);

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

73

 if (delivery instanceof EmailLicensingFacadeDelivery) {

 EmailLicensingFacadeDelivery emailDelivery =

 (EmailLicensingFacadeDelivery) delivery;

 try {

 if (emailDelivery.sendLicense(aLicense, aCustomer,

 getLicenseMessageSubject(), getLicenseMessageText()))

 result = new LicensingFacadeResult(LicensingFacadeResultBase.

 RESULT_OK, null,

 emailDelivery.getSentMessage(aCustomer));

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 } else {

 result = delivery.deliver(aLicense, aCustomer);

 }

 return result;

}

Extending LicensingFacadeExtensionSupport

While it is possible to directly implement the LicensingFacadeExtension interface it is

more practical and is recommended to extend LicensingFacadeExtensionSupport

class instead. LicensingFacadeExtensionSupport provides default implementation for

most of the plug-in methods in the way similar to the ones described in the previous

topics and as a result allowing overriding only required abstract methods.

Logging Licensing Activities

Protection! Backend logs licensing attempts, methods calls and results etc. by writing

them to files, console or to other supported destination.

Note that such logging capability is not considered to be a part of custom business logic.

Rather, it provides information for system administrators about what, where and when

occurred in the backend. In most of the cases such information can be used to find and

analyze various problems.

It is possible to add custom logging to specific plug-in implementation by calling suitable

methods of ProtectionLogger interface. Default instance of ProtectionLogger can be

obtained using the LocalLicensingFacade.getLogger() method.

By default the Java Logging API is used in implementation of ProtectionLogger

interface. Custom plug-in implementation can obtain default logger by

LocalLicensingFacade.LOGGER_NAME name and configure it by specifying level,

handlers etc. For example:

Logger logger = Logger.getLogger(LocalLicensingFacade.LOGGER_NAME);

Logger.setLevel(Level.ALL);

However, developers are free to make their own implementations (e.g. by employing

Log4J framework). In such a case a new ProtectionLogger instance should be specified

to the Protection! backend by call of LocalLicensingFacade.setLogger(…) method.

Deploying Plug-in Implementation

To deploy plug-in implementation to Protection! Web Services Application the factory

class responsible for plug-in instances creation should be implemented. The factory

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

74

class should implement LicensingFacadePluginFactory interface as listed in the

sample code below.

public class LicensingFacadePluginFactoryImpl

 implements LicensingFacadePluginFactory {

 public LicensingFacadePlugin create(LocalLicensingFacade

 aLicensingFacade) {

 LicensingFacadeExtensionImpl result =

 new LicensingFacadeExtensionImpl();

 result.init(aLicensingFacade);

 return result;

 }

 public void release(LicensingFacadePlugin aLicensingFacadePlugin) {

 }

 public void init() {

 }

 public void close() {

 }

}

When the plug-in implementation and factory are ready, they should be compiled and

deployed to a .jar file. Now the plug-in is ready to be included in the Protection! Web

Services Application. This can be done via specifying plug-in factory class, plug-in library

(.jar) and any other libraries required by plug-in implementation using the Plug-In page
of the Licensing Façade Configuration dialog in Protection! Control Center. After

specifying the plug-in properties, Protection! Web Services Application should be

exported to a .war file and deployed to a Web Container as described in the previous

topics.

11.7 Deploying Protection! Backend Applications

To deploy Protection! Backend (Server) application, a deployment license must be

purchased. For more information on purchasing a Protection! Backend (per CPU)

deployment license, see http://www.jproductivity.com/products/protection/buy.htm

To the extent that you are allowed to redistribute third-party redistributables under the

terms of your license, you may redistribute these classes/resources in any of the

formats subject to the restrictions in the third-party license agreement. Refer third-

party-license.html for the details regarding redistribution.

11.7.1 Protection! Library Redistributables

Only the following libraries may be deployed with your application when you purchase a
Protection! Server/CPU deployment license:

1. Protection.jar - Protection! core.

2. ProtectionPriv.jar - Protection! backend core.
3. bcprov-jdk14-136.jar–Bouncy Castle Crypto API.

To the extent that you are allowed to redistribute redistributables under the terms of

your license, you may redistribute these classes in any of the following formats subject
to the restrictions in the license agreement.

1. Protection! API

http://www.jproductivity.com/products/protection/buy.htm
../../Gregory%20Ledenev/Local%20Settings/Temp/Temporary%20Directory%201%20for%20Protection_Developers_Guide_rev1.zip/lib/third-party-license.html

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

75

c) As the entire Protection.jar and ProtectionPriv.jar file.

d) As content of Protection.jar and ProtectionPriv.jar bundled (and optionally

obfuscated) into your application archives.

2. Bouncy Castle Crypto API

b) As the entire bcprov-jdk14-136.jar file.

11.7.2 Redistributables to Allow Support for License Delivery via E-mail (Optional)

For the purpose of the license(s) included with this product, the redistributables to allow
support for license delivery via e-mail mechanism and support for e-mail template

processing is defined as the activation.jar, mail.jar, and freemarker.jar files located in

the /<install_dir>/lib directory.

To the extent that you are allowed to redistribute redistributables under the terms of

your license, you may redistribute activation.jar and mail.jar in any of the following

formats subject to the restrictions in the license agreement:

a) As the entire activation.jar and mail.jar file

To the extent that you are allowed to redistribute redistributables under the terms of

your license, you may redistribute freemarker.jar in any of the formats subject to the

restrictions in the third-party license agreement.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

76

Chapter 12

12. Frequently Asked Questions

General questions

How do I implement Protection! with applications running on a GUI-less,
server environment?

It is quite easy to embed Protection! into any application. The developer can use the

following steps:

1. Create a new product in Control Center using the Edit Product Dialog, and specify the

product’s editions, features and other attributes.
2. Specify the resource folder attribute for your product using the Edit Product Dialog |

Locations | Resource Folder edit box to let Protection! know where to find the license in

your application archive (e.g. /com/acme/app)

3. Use "Headless" code snippet to get a template of the class that should be used to
embed Protection! in your server application.

4. Modify the generated code to execute actions appropriate for certain events. Here is a

simple example:

private LicenseAdapter licenseListener = new LicenseAdapter() {

 public void licenseOk(LicenseHost aSource, License aLicense) {

 enableMyFunctionality(true);

 }

 public void licenseExpired(LicenseHost aSource, License aLicense) {

 enableMyFunctionality(false);

 }

};

In this example, you have some functionality disabled by default and you enable it only

when the license is valid and is not expired.

5. Add a call of checkLicense() method somewhere in your code during application

startup, and schedule a call of it each new day (hour, minute...) to ensure that the

license is still OK.

6. Generate a new evaluation license, make an application archive (e.g. .jar, .war,
etc...) and include application classes and license file into it.

That's it! Now you can deploy your application on your Server, and it will work until the

date stated in the bundled license. When your customer purchases a commercial license
he/she should simply copy it to the HOME folder to get the application licensed!

Is activation with lock limited to the platforms that have native libraries

provided?

If you use the default implementation provided by Protection! - then Yes.

However, you are free to provide your own implementation. Protection! Professional

edition does provide developers with the ability to lock a license to a specific system.

The default implementation allows you to lock the license to a network card MAC

address. However, the developer/publisher is free to lock the license to any other user-
definable attribute.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

77

For example: You can lock the license to the user's host address by making a subclass

of LicenseHostPro and overriding the getActivationLockKey() method to employ

any other methods/lock mechanisms/etc...
The following code snippet illustrates how to employ a node’s IP address

to be used as activation and lock key:

public class LicenseHostProEx extends LicenseHostPro {

 protected String getActivationLockKey(LicenseImpl aLicense) {

 return getActivationKey(InetAddress.getLocalHost().getHostAddress().

 hashCode());

 }

}

How do floating licenses work?

Protection! sends a UDP broadcast (Firewall friendly) message on a specific port, and

with a specific signature. At the same time, Protection! listens and collects

responses. Response will contain the license number and other important license
attributes. As responses are collected, Protection! counts how many

licenses are allowed and how many licenses are in use. If the number of

licenses in use is greater than allowed by the floating user license, then Protection! fires

an appropriate event.

You should override the numberCopiesViolation(…) method in your implementation of

the LicenseListener interface to listen and properly handle such situations.

Please note: Protection! is a framework, and it will provide you with all

necessary mechanisms and sometimes their default implementations. As a developer,

however, you need to tell in your implementation code

what should happen with your application when Protection! tells you

that certain events/conditions have occurred.

What if on-line activation is not possible?

Please see the following simple code snippet that allows generation of the activation

key. This snippet can be embedded or used to generate the activation key. The
generated activation key can then be emailed back to the original developer/publisher,

along with the original license for further generation of the license with the "activation

and lock" option.

public class ActivationKeyGenerator {

 // introduced subclass of license host. Note it MUST be used for both

 // activation key generation

 // and usual use to provide licensing

 public static class LicenseHostProExt extends LicenseHostPro {

 // overriden to always return MAC address based activation key

 public String getActivationKey() {

 return getActivationLockKey(“”);

 }

 }

 // simply prints activation key

 public static void main(String[] args) {

 LicenseHostProExt licenseHost = new LicenseHostProExt();

 System.out.println(licenseHost.getActivationKey());

 }

}

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

78

Please note: The above code snippet is suitable for "headless" environment. For GUI

based applications, the Protection! License Activation Wizard should be used to resolve

license

activation issues.

How do I implement Protection! with a product that has SDK and Runtime

libraries?

Q. We are deploying our products as:

2. SDK - The customer develops applications which are linking with our libraries
3. Runtime - The customer purchases a runtime license to run the applications they

created with our SDK

4. Applications - The applications that we created with our software base

5. How we going to differentiate Runtime and SDK distributions?

A. The schema could work as follows:

 For your SDK - you could create a product in the Protection! Control Center with 2

(two) editions - API and Runtime. You would then generate a license for the API

edition and would implement license reading and validation somewhere in either/or
both - initialization method, a specific API call, etc. In your API license, you would

set some limitations like expiration date, number of copies, etc. In your

Runtime/Deployment license, such limitations would go away.

 For your Applications - if they are using your SDK, then it is probably a good idea to
make your application see the SDK license. This way you would not need to generate

two or more licenses for an application. However, you can also have two or more

licenses if desired - one for the SDK and one for the application.

Can Protection! be integrated with online automated systems?

Protection! would allow you very smooth and seamless integration with almost any

backend system by either using Protection! Web Services (default implementation) or by

writing your own backend implementation (RMI, EJB, etc). One of the major points that
separates Protection! from its competitors is that Protection! is a framework and

therefore gives you as a developer/publisher all the necessary tools and methodologies,

while not imposing any limitations or having any "underwater stones". You can use and

embed Protection! into your application in as little as 5-10 minutes (via automatically

generated for your product and ready to use java implementation files) or extend
Protection! to fit your specific needs.

There are many security models that could be implemented with the aid of Protection!

These models could be either manual (require manual license generation) and/or
automated where a license can be generated by the Protection! backend automatically.

With automatic license generation, the license can either be deployed to your customer

immediately or can be stored in some queue for further review and approval by

sales/management before distribution). You can also tie Protection! backend to your
sales-force application that processes your orders, so that the backend will query if a

valid purchase was recorded before the commercial license is activated. As you can see,

these models could be as complex or as simple as you want them to be. Protection!

gives you 100% flexibility to implement any of them by being a Framework, and by not

imposing any of the models on you as developer/publisher.

In general, for a GUI application you could follow these steps:

1. Vendor generates a license that requires activation and lock

2. Vendor provides this license to a customer
3. Customer copies the license file to the right place manually, or starts the application

and uses the Licensing Wizard to specify the license file location

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

79

4. Customer gets License Activation Wizard prompting him/her to activate the license If

offline activation is chosen, then he/she should provide the Activation Key shown in

the Wizard back to the vendor by e-mail or phone

5. Vendor re-generates the license, turning on activation and lock and places supplied

by customer Activation Key in the "Activation Key" box in the Protection! Control
Center

6. Vendor provides the activated license to a customer.

If Protection! Backend is used, then steps 5-6 will be handled by Protection! Backend
automatically.

How can I implement an efficient "Secret Storage"?

Protection! provides a file-based implementation of secret storage that has no native
code dependencies, and therefore will work on any platform. You can use several

instances placed in different locations e.g. one based in the user's HOME folder, another

one in some unique system folder, etc. Having several secret storage files can be

enough in most of the cases. As an alternative, you can implement your secret storage

using standard Preferences API to hold data in a more-or-less secret location (e.g. in
Registry under Windows).

Actually, the only time you should be seriously concerned about efficient secret storage

design/implementation is when you provide a bundled evaluation license, and therefore

allow a flexible expiration date (the flexible expiration date is set based on the first
usage of the application). In this case, if customer locates and removes all secret

storages of your application, he can continue to use the evaluation indefinitely.

If no bundled license is used, and therefore you will provide evaluation licenses

personally to each of your customers, the only way to trick your application is by playing
with the system time. Certainly it is possible in some rare situations, but it is completely

inappropriate for server and enterprise based applications as it can cause a series of

other server applications to behave incorrectly.

How does Protection! recognizes the expiration date if the application is

already running?

If your protected application is currently running and/or in constant running state (i.e.,

server based application) you should perform license checking procedures at some

predetermined/scheduled time interval.

How does Protection! handle various events fired during the license

reading/validation processes?

During license checking and validation, Protection! Licensing Toolkit provides detailed
feedback about the process status and its results back to the application. This feedback

is provided by firing an appropriate set of events. It is the responsibility of the

application developer to decide which action should be taken in response to a particular

Protection! event. The default implementation assumes no actions for any such events
provided by Protection! Licensing Toolkit. For example: when it is determined by

Protection! that the license file is invalid, the application can either exit or the

application could disable all or part of its functionality. Such a decision is the

responsibility of the application developer (there is no default behavior provided by

Protection! Licensing Toolkit). In addition to the event based analysis/action, it is always
possible to get the current status of the license at anytime during an application’s

run/lifecycle, to see whether the license is valid.

While the default implementation of the license checking mechanism provides

functionality that would be enough for the majority of
applications, developers can easily override/extend any license reading/validating

procedures to get the desired results.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

80

Would Protection! detect a "number of copies violation" if the application is

running on two different networks?

Probably not! It depends on the network settings/configuration. If firewall(s) or

router(s) are instructed to filter broadcasting, then this approach will not work. While

the current default implementation of the "number of copies violation" detection
mechanism has some well known disadvantages, it requires zero-administration and

eliminates additional costs of buying and hosting a licensing server.

Can Protection! be integrated into an app server environment?
Yes, Protection! can be easily integrated into an application server environment.

Protection! Pro also provides:

 Powerful default back-end implementation that gives you a foundation

for building custom back-office system integration
 Plug-in support to allow easy extension of default back-end implementation

 Ready-to-deploy Protection! Web Services application

Please look at the "Licensing Facade Configuration Dialog" section in the Protection!

User Guide for more information.

Does the secret storage file get deleted during uninstall of the protected

application?

This depends on how you build your installation. If you deploy your secret storage

during the installation and you use Protection! file-based default implementation, then
probably every installer package on the market today would allow you to exclude certain

files from the uninstaller script, so the file would remain on the user's system. This said,

you can generate secret storage dynamically after the installation and during the first

usage of the application (see the sample DemoCalc that comes with Protection! for an
example of such an implementation).

Is Protection! secret storage only file or Java Preferences API based?

No. The secret storage is a mechanism which used to provide a way to persistently store
various information about the application and any other information (if necessary). The

default secret storage implementation is file or Java Preferences API based. However it

is up to you as a developer to implement a desired secret storage mechanism of your

own, if so desired (e.g. Windows Registry based).

Can someone else who bought your product generate licenses for our

products?

Without having product storage there is no such possibility for anyone who also has

Protection! to generate licenses for someone else’s products. Similarly, you would not
be able to generate license for the Protection! Control Center yourself.

Is Protection! compatible with obfuscation products?

Protection! co-exists very happily side-by-side with code obfuscation.
In general, you should embed all Protection! redistributable classes inside your

application archive, which in turn should be obfuscated using your favorite Java byte

code obfuscator.

Will the Encryption Key Bytes ever change once the product has been created?
No. Once the product has been created in Protection! Control Center the Key Bytes will

not change for a given product under any circumstances.

Is it possible to define the product editions, features, etc. in a relational
database?

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

81

In theory, it is possible to define the product editions, features, etc. in the relational

database, along with the key used to generate the licenses, and use the API to pass that

information in to generate the license.

You can obtain products from the products storage and save their properties to a some

database. Later, when you'd like to read or generate licenses you can create a product
instance, fill its properties from the database, and use it. Please check classes in the

com.jp.protection.priv and com.jp.protection.priv.products packages to get full

access to the required low-level API.

However, the most simple way to do this is by using BLOB's in your database (if

supported). In this case, you can simply save and load products storage to and from DB

using a BLOB field. ProductsStorage class provides the following methods suitable for

such a task:
public boolean save(OutputStream anOutputStream) throws IOException

public boolean load(InputStream anInputStream) throws IOException

Is it possible to generate a commercial license with an expiration period?
You can generate a commercial license for you customers with the specified expiration

period. At a time of license reading and validation, you would check for an expiration

period and would (or would not) check for the application version.

This allows some software publishers to implement "rental" licensing mechanism. In this
case, your client is renting your application/library for a mutually agreed renting/leasing

period (this would indicate license expiration period span).

Where can I find Javadocs for Protection! API?

You can find Javadocs in <install_dir>/doc/ProtectionDoc.jar

Why doesn't Protection! provide any error messages?

Suppressing error messages is by design, as having any output during license reading

and validation can effectively reduce efforts required to break the protection. That's why
there are no exceptions shown during the process. But you can change this behavior for

debugging purposes by calling setVerbose(true) methods for license reader and host.

Can Protection! be integrated with the installation tools

You can take the following approach:

1. Use GUI code snippet that is generated by Protection! Control Center.

2. Build it and add it to your Installation tool of choice to be executed as custom code
(see your installation tool documentation on how to include/execute custom code).

3. Call it (ProtectionSupport code) from within your Installation tool where you think it

is appropriate.

4. Call to ProtectionSupport class would initiate standard Protection! Licensing Wizards
and will aid your users in obtaining the license.

5. When your user would launch your application, the license would already be

obtained (previous step).

What is the encryption size used for a Protection! license?

Protection! uses 256 or 512-bit RSA encryption.

Are you using RSA key pair?
Yes

Do you generate a key pair for each product?

Yes

Does Protection! support a license with a flexible expiration date?

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

82

Yes, Protection! will allow you to generate a license key having a flexible expiration date

- meaning that the actual expiration date would be set when the user launches your

application for the first time. The expiration date would be set for a number of days

(specified by you) from the first usage of your application.

Protection! allows you to bundle a license with your application. You should specify the

license location options using the License Location group in the Location tab of the Edit

Product dialog. You should then specify license file name, folder to find the license in the

local file system and resource folder (e.g. /com/jp/samples/protection/) to find the
license within your application archive. By default, Protection! tries to find license in the

local file system. If the license is not found, then Protection! tries to find the license in

the application archive. This allows for bundling evaluation licenses with your application

(e.g. for CD distribution). When a customer buys a commercial license, he/she should
place it into the specified folder or use the help of the Protection! Licensing Assistant to

do so.

Please use the following method setAllowFlexibleExpirationDate()to specify

whether the expiration date of a license should be adjusted according to the current

date and duration of the evaluation period.

Does Protection! prevent the end-user from decompiling the Java byte code?

It is not the responsibility of Protection! to prevent de-compilation. However, Protection!

does prevent potential malicious application patching via the Protection! Integrity

support module.

Do you consider Protection! to be un-crackable?

One of the major things that differentiates Protection! from a small number of

competitive products is that Protection! is a framework. Therefore, you, as a
developer/publisher not only have *full* control of design and implementation of your

licensing solution, but it is also totally up to you on how well and/or strongly you will

protect your application. Please keep in mind that there is always a fine-gray-line

between strong protection and user-friendliness of your application. On a different note

- We do not think anyone can honestly say (and if anyone would - it would be a lie) that
something is un-crackable. However, this is a more theoretical and philosophical

question for debate :)

How much time would it take to implement Protection! in my application?
Protection! has an extremely fast learning curve. With the help of the Protection!

tutorials and provided examples, a developer would be able to write protected

application in a matter of hours.

Can a License be created from the remote location?

Yes - this could be done with the aid of Protection! Backend via WebServces (default

implementation) and/or EJB, RMI, etc.

Why are activation, serial number, and other things missing from the License
Activation Wizard dialog?

You probably did not create and register LicensingFacadeProvider. Therefore,

Protection! does not know how to get a license from a remote host, etc...

Please look at the DemoCalculator (that comes with Protection!) source code

<install_dir>\samples\src\com\jp\samples\protection\DemoCalcProtectionSupport.java

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

83

for initLicensingFacade() method.

How can I enhance the license checking procedure?
Please look in your ProtectionSupport.java file (generated code snippet):

private DefaultLicenseAdapter

 licenseListener = new DefaultLicenseAdapter(owner) {…}

has a lot of methods such as licenseCorrupted(…), licenseExpired(…) etc. You can

override any of these methods to handle your situations. For example if the license is

expired you can invoke System.exit(), etc.

What is the Custom License Agreement option?

Please note that this section is reserved for *TRULY* custom License agreements. In
normal usage, you would specify the License agreement in your code through the

following methods (this is also generated by Protection! Code snippets):

licenseHost.setLicenseTextCommercial("Commercial license agreement text");

licenseHost.setLicenseTextEvaluation("Evaluation license agreement text");

You should use the custom license agreement in situations when you need to create a
special agreement for one customer in some special case only!

Please note: Custom License agreement is encoded into the license key. Therefore if

your custom license agreement is large - your generated license key would also be
increased in its size.

Why am I getting an expired license message when trying to run the Demo

application?

Possibly the license expired at some point in the past. If this is the case, then the
expiration flag was written into the secret storage -

this prevents your users from downloading evaluation licenses and using them after the

expiration date. Either generate an extended evaluation license, or delete your secret

storage and run your application again with a regular evaluation license.

How does the extended evaluation license work?

Extended evaluation ignores any previously set expiration time, and therefore it allows

you to extend the evaluation period for eligible customers. If and how many times you
and/or your backend will issue extended evaluation license is all up to you as a

developer/publisher. A user could request extended evaluation license ad infinitum, but

you (if you issue licenses manually) and/or your backend implementation would need to

make a decision based on your business practices if you allow extended evaluation to be
requested at all/more then once/how many times/ etc...

What is the file size overhead for embedding Protection! libraries into our

application?

This is depends on the Protection! Licensing Toolkit functionality that you are planning
to utilize in you application. For a description of the deployment libraries please see

<install_dir>\lib\deploy.html. In case you are only deploying Protection! Library

Redistributables, you would need to deploy Protection.jar and bcprov-jdk14-136.jar only

(~2.5 MB).

Are native calls always used even when I do not check the MAC address?

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

84

No. You need to provide native libraries only if you are planning to utilize the "named-

user" licensing model with the ability to lock a license to a specific computer system

using MAC address of network card a one of the lock attributes.

Is it possible to provide default user details with the application?
You can do this using the following scenario:

On Publisher Side: put customer details into the license properties e.g. via specifying

customer attributes for the license using the License Screen.

On Client Side:

1. Read the license.

2. Create an instance of the Customer class and specify its properties based on the

properties you put into the license.
3. Write customer data using

customer.toPreferences(LicenseUtils.getCustomerPreferences(license.

 getProduct()));

Now, customer data will be shown in the Protection! About Dialog.

Why does the license checking process not fully complete sometimes?
It seems the issue is caused by missing native libraries. Such libraries are required to

obtain the network card address used to lock a license to particular computer. To see

any exceptions, you should turn on verbose mode of LicenseHost by calling

setVerbose(true) method. Please consult the <install_dir>lib/deploy.htm for more

information.

What part does the FileSecretStorage.setDirty() play?

It allows you to set Secret Storage mode when changes were made since the last load

or creation. If secret storage is not modified (not dirty) the save() method simply does

nothing.

Can multiple Secret Storage files be kept in-sync?

Yes, it is possible by using the LicenseHost.saveSecretStorageProperty(…) method.

When should I call the SecretStorage.save() method?

Q. Should I manually call SecretStorage.save() after a call to

SecretStorage.setProperty() or is it called automatically after a property has

changed?

A. You should manually save Secret Storage by call SecretStorage.save() when you

think it is appropriate.

Should I implement the code for checking the number of copies myself?

You should override numberCopiesViolation(…) method in your LicenseListener

implementation and write code that will make the appropriate actions to handle this

case.

Please note: Protection! is a framework - it will provide you with all necessary
mechanisms and sometimes their default implementations. However, you as a developer

need to tell in your implementation code what should happen with your application when

Protection! tells you that certain events/conditions have occurred.

Does Protection! provide the ability for a product to be locked to a specific

system?

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

85

Yes, Protection! Professional edition does provide developers with the ability to lock a

license to a specific system. Protection! provides support for a variety of licensing

models. The "named-user" licensing model will allow you to lock the license to a

network card MAC address (default implementation) or other, user-definable attribute.

How would Protection! deal with re-installation of a protected application and

evaluation license?

This is controlled by the Secret Storage file(s). Because the Secret Storage file is being

generated in the first use of your application, the uninstaller would never remove this
file because the uninstaller does not know anything about this file. It is up to you

where and how you implement Secret Storage. The simplest way is to put it in user

HOME directory. However, you can also modify the Registry, create multiple secret

storage files, etc, etc.

Is it possible to use Serial Numbers without contacting software developer /

publisher?

No, this is not possible as Serial Numbers represent a very small subset of the license

and it is designed so you can deploy your application and supply a Serial Number on a
CD.

How can I test numberCopiesViolation?

Such test needs to be performed on multiple copies on two or more different systems. If
you are testing multiple copies on same system - this would never work because of the

same computer.

How do I specify custom properties for a given license?
The easiest way is to create custom properties in Control Center (see Properties Tab -

Control Center License Screen). Give this property some descriptive name like

"Connection Number" (or whatever you want it to be) and set it to a desired value. In

your code, after you read a license, use getProperty(…) method to read your property

and its value. Then you can specify how your application would behave if the property

value is outside of its expected range.

How can I include line breaks in the license agreement text?

Q. I cannot seem to include new lines in the license agreement text. I tried \n and \r\n

but only get a continuous string that wraps.

A. Because the License Agreement is treated as HTML, you should use HTML tags to
brake your text (e.g.,
</br>; <p></p>, etc). Using HTML, you can also implement

better formatting of your text vs. plain ASCII text.

Is Protection! multi-platform?
Protection! Licensing Toolkit is multi-platform. Protection! is tested and verified for

Microsoft Windows NT/2000/XP/Vista, Solaris/x86, Linux (Red Hat/SuSE) and Mac OS X.

However, it should work on any Java-Enabled platforms.

Does Protection! show exceptions, if any, during license reading and
validation?

No. To see exceptions, if any, you should turn on verbose mode of LicenseHost and/or

LicenseReader by calling setVerbose(true) method.

Please note: This should be set for testing purposes only and should be turned off for
production.

How can I specify various environmental settings within the license?

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

86

Protection! provides you as a developer/publisher with ability to specify an unlimited

number of custom properties (key/value pairs). Such properties could be used at any

point of license reading/validation in order to allow/disallow some (or all) of you

application functionality.

Why am I getting java.lang.NoClassDefFoundError exception?

The following exception:

java.lang.NoClassDefFoundError:

org/doomdark/uuid/NativeInterfaces ...

is caused by missing libraries needed to support “named-user” licensing model. You

need to provide <install_dir>/lib/jug.jar and native libraries if you are planning to utilize

the "name-user" licensing model with the ability to lock a license to a specific computer

system. For description of the deployment libraries please see:
<install_dir>/lib/deploy.html.

Protection! Back-end and Web Services

How do I manage and track generated licenses?

Protection! is not responsible for such tasks. However, you can achieve this by writing a

plug-in to Protection! Web Service default implementation.

Protection! provides default implementation of LicensingFacade as a Web Services

application. Certainly you are free to make any other implementation suitable to your
requirements e.g. RMI or EJB based. Licensing Facade Config Dialog provides the ability

to configure Protection! WS application so you don't need to play with WS or servlets

directly. You should just specify all the options and deploy them along with the product's

storage to the Web application using the File | Deploy WS menu in the Products Screen.
As a result, you'll get ready to deploy Web application capable of license generation and

activation through the use of Web Services. This allows you to quickly and easily start

development of a protected application.

While the default implementation provides a good start, you probably need to extend it
to have the ability to log issued licenses and/or decide when it is possible to issue or

activate a particular license. It is possible by writing a plug-in to the default

implementation. Plug-ins should be implementations of either:

LicensingFacadeDelegate or LicensingFacadeExtension interfaces. You should also

provide implementation of LicensingFacadePluginFactory responsible of plug-in

creation. Then you should pack all your classes to the general use archive and use the

Plug-in page of the Licensing Facade Config Dialog to specify factory class, plug-in

archive and all other libraries required by plug-in to work (e.g. JDBC driver). Finally, you

should put this config to the WS application and deploy to the Web container. It is also
possible to specify database options for convenience of database plug-ins development.

Does Protection! Web Service perform any kind of logging?

Yes, Protection! Web Service provides logging using default Log4J based
implementation.

Why do I get an exception when trying to connect to Protection! Web Service?

The following exception:

Exception occurred during event dispatching:

java.lang.NoClassDefFoundError: org/apache/axis/AxisFault

 at

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

87

com.jp.protection.pub.pro.integration.ws.LicensingFacadeWS

...

indicates that Apache Axis libraries are missing. You need to add Apache Axis libraries to

your deployment. For description and usage of the deployment libraries please see
<install_dir>\lib\deploy.html.

With the deployed back-end service, is Protection! able to respond to

commercial license requests?
Absolutely!

Why am I receiving a corrupted license from Protection! Web Service?

This could be caused if an incorrect or missing license file is specified in Licensing
Facade Config Dialog | General Tab | Deployment License. You must specify the location

of your commercial or evaluation Protection! License key file (protection.key)

What container can host Protection! Web Service?

Any available web container (free or commercial) supporting Servlet API 2.3 and JSP 1.2
(if you will use JSP) would work.

License specific questions

When a license is generated with the 'activation and lock', why don't I see the

License Activation dialog?

It seems the issue is caused by missing native libraries. Such libraries are required to

obtain the network card address used to lock license to particular computer. To see

exceptions, if any, you should turn on verbose mode of LicenseHost by calling

setVerbose(true) method.

Why does the Protection! About Dialog shows "Unlicensed" for a license value?

The About Dialog shows "Unlicensed" state when no license is available, or when the

license has been read but not yet checked. You can get such a result when you call the

About Dialog before checking the license. Most probably you are using different
LicenseHost's for license checking, and for showing the About Dialog (this is not the best

implementation pattern).

What is the general license activation sequence for a GUI application?
1. Vendor generates a license that requires activation and lock.

2. Vendor provides this license to a customer

3. Customer copies the license file to the right place manually, or starts the application

and uses the Licensing Wizard to specify the license file location
4. Customer gets the License Activation Wizard prompting him/her to activate the

license If offline activation is chosen, then he/she should provide the Activation Key

shown in the Wizard back to the vendor by e-mail or phone

5. Vendor re-generates the license turning on activation and lock and places supplied
by customer Activation Key in the "Activation Key" box in the Protection! Control

Center

6. Vendor provides the activated license to the customer

If Protection! Backend is used steps 5-6 will be handled by Protection! Backend

automatically.

How do I 'lock' the license to a Network card's MAC address?

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

88

You would use the "Activation and Lock" option when generating the license that you

would supply to your customer(s) (or embed into the application). When the customer

runs your protected application with this license he/she would see License Activation

Assistant Wizard and would be able to provide you with a generated activation key. This

key is being generated/calculated based on the customer's MAC address.
If you do not use Protection! backend, then you can generate and provide to your

customer an activated license by specifying the received from the customer activation

key in the "Activation Key" box in the Protection! Control Center.

The activation process always requires contacting the vendor/publisher either off-line
(e.g. by calling/e-mailing sales) or on-line by using Protection! backend. This allows

vendors to:

 Track actual application deployments. For example, if a bundled evaluation license

requires an activation, then each evaluator would have to provide his/her credentials
before using the application

 Implement the Floating User licensing model by enabling usage of only the

purchased number of copies by activating only that number of licenses that are

specified in the license’s number of copies attribute

 Implement the Named User licensing model by locking a license to a particular
computer

How does Protection! know that a license file is locked to a MAC address and

therefore cannot be reused?
Because a License that is being generated is based on the activation key from your

customer. The activation key is unique to the customer's system (calculated based on

the customer MAC address - default implementation).

If license activation is required, License Host (Pro Edition only) generates Activation Key

by calling getActivationKey() method and checks whether such property is already

present in the license and if so whether it has the same value. Method

getActivationKey() actually calls the following methods depending on whether license

needs to be locked:

1. getActivationKey(license) - generates Activation Key when the license should

not be locked. Method’s implementation uses concatenation of product and license

number hash codes

2. getActivationLockKey(license) - generates Activation Key when the license

should be locked. The current implementation uses MAC address of the network card
to generate this value

If license is moved to a different system, then License host method

licenseLockViolation(…) can notify listener that the license is activated for use on

another computer.

Can Protection! generate specialized keys for our subscribers automatically?
Yes, Protection! can generate specialized license keys. Such license keys could be

generated and distributed to application subscribers in several ways:

 Protection! Web Services application could generate a license automatically upon

request from the user, and distribute the license either via Direct Internet
connection (with support for Proxy) or via e-mail - all of these are controlled by you

as a developer

 Protection! could generate either one or multiple Serial Numbers for a given license

(e.g. SR84D-VBESQ-GK3RC-F9HM5-ESQGU) You as a developer can also choose if
the license, which you provide to the user, needs to be either:

a) Activated (this would generate a unique activation key for a given license)

b) Activated and locked (this would lock the license to a specific computer system

via the network card MAC address, or some other, specified by your attribute)

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

89

c) You can also specify that the user must provide user's info (name, company, e-

mail, etc) during product activation

 Protection! has built-in sophisticated and highly customizable Licensing and

Activation Assistant Wizards that would aid your users in the process of obtaining

new/evaluation/extended evaluation/commercial license and/or activating such a
license (if necessary)

 And, of course, you can generate a license manually using Protection! Control Center

- with all of the above mentioned functionality and attributes

What is the procedure for sending an activated commercial license?

Q. What exactly is the procedure? Surely you don't want to send out an activated

commercial license without having approved the customer's purchase order.

A. Probably not, but this is again all up to you as a developer/publisher. There are many
models that could be implemented on how and when you would decide to distribute an

activated commercial license. These models could be manual (require manual license

generation and/or license can be generated by backend automatically, but stored in

some queue for further review and approval by sales/management before distribution).

You can also tie backend to the sales-force application that processes your orders in
order for backend to query if a valid purchase was recorded before the commercial

license is activated. As you can see, these models could be as complex or as simple as

you want them to be. Protection! gives you 100% flexibility to implement any of them

by being a Framework, and not imposing any of the models on you as
developer/publisher.

 In general, the steps could be as follows - for GUI application:

1. Vendor generates a license that requires activation and lock

2. Vendor provides this license to a customer
3. Customer copies the license file to the right place manually, or starts the application

and uses the Licensing Wizard to specify the license file location

4. Customer gets License Activation Wizard prompting him/her to activate the license If

offline activation is chosen, then he/she should provide the Activation Key shown in
the Wizard back to the vendor by e-mail or phone

5. Vendor re-generates the license turning on activation and lock and places supplied

by customer Activation Key in the "Activation Key" box in the Protection! Control

Center

6. Vendor provides the activated license to the customer
If Protection! Backend is used steps 5-6 will be handled by Protection! Backend

automatically.

Does the "floating" model require that a separate licensing server to be
running?

There are two floating models: network broadcast based and Licensing Server based

models. The first model does not require presence of the Licensing Server as it simply

utilizes local network resources to find other applications running within network.

How does Activation work at a high-level?

With Activation and Lock: Your user, in order to be able to use your application, would

have to provide you an activation key that is generated by Protection! and is *specific*

to the user's system. When you generate the license key for this user - this license key
would only be able to work on this specific user's system. If license is transferred to

another system it would throw necessary events during license reading/validation stage

such as (in this case):
licenseLockViolation(LicenseHost aSource, License aLicense)

In this case, the License host calls this method to notify the listener (your application)

that the license is activated for use on another computer. You, as a developer, will need

to build some logic into your application to handle (this or other license

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

90

reading/validation) events. For example, if such event occurs, you can completely

disable the application features, or enable only some of them, etc...

Of course, all of the above is applicable if you will use Protection! Web Service to

generate and distribute a license key file to your users without your (publisher)

interaction.

I like the idea of authenticating the license to a certain machine, but...

Q. I like the idea of authenticating the license to a certain machine. However, what

happens when the machine is replaced, due to failure or old age? What is the pathway
for the user to obtain a valid license for the replacement machine?

A. This could be handled several ways - however, as you would probably agree, in the

majority of the cases this is an administrative (your) decision to issue a new license.

In any case, you can create a generic license that would require activation-and-lock.
This license could be either evaluation or limited functionality, with a flexible expiration

date (when the expiration date is set based on the first run of your application) -

whatever. Then, you embed this license inside your application archive.

In brief - you can embed the license into the application archive as follows: You can

Specify the resource folder attribute for your product using the Edit Product Dialog |
Locations | Resource Folder edit box to let Protection! know where to find the license in

your application archive (e.g. /com/acme/app)

Use Protection! code snippet to get a template of the class that should be used to

embed Protection! in your application. Generate a new license; make an application
archive containing your application classes and the license file.

That's it! Now you can deploy your application with the bundled license. Please note -

you can use both licenses (embedded and located within the file system). This way, you

can deploy your application with a bundled evaluation license and when your customer
purchases a commercial license, he/she should simply copy their license to your

<application_root>/license/ folder, for example.

Back to the question: Let's assume that the user reinstalls his system, changes

hardware, etc, etc. - in this case, the user either would need to reinstall your application
in which case it would be using an embedded license until the user requests a full

commercial one. Or, another example would be if you lock your license to a network

card MAC address and the user changes the network card (or if license is transferred to

another system). In this case Protection! would throw necessary events during license

reading/validation stage such as (in this case):
 - licenseLockViolation(LicenseHost aSource, License aLicense)

Protection! License host calls this method to notify listener (your application) that the

license is activated for use on another computer. You, as a developer, will need to build

some logic into your application to handle (this one and/or other license
reading/validation) events. For example if such an event occurs, you can completely

disable the application's features, or enable only some of them, or call Protection!

Licensing Assistant Wizard to aid the user on resolving this issue, etc, etc, etc...

Demo Calculator (a sample application that comes with the Protection!) illustrates this
and many other examples.

What prevents a user from reusing license keys?

Q. What prevents a user from reusing license keys, to install and use an unlimited
number of copies of the product?

 Protection! has several built-in mechanisms to prevent this:

Number of copies violation - where you indicate how many copies of your product

would be able to run on the network (floating license model).
 Activation and/or activation-and-lock mechanism - where you lock the license to a

specific computer system (named-user licensing model)

And of course - because Protection! is a framework you can mix-and-match existing

mechanisms, extend them, or implement your own.

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

91

Can online licensing be run on a Linux server?

Protection! is 100% pure Java so it will run on any platform that supports Java. We have

successful implementations on various flavors of UNIX and Linux, MAC OS X and of

course Windows.
The one and only time where there are some platform dependencies is when the

"activation-and-lock" mechanism is chosen. Protection! default implementation is able to

lock a license to a network card MAC address, and therefore uses some native libraries

(provided with Protection!). Of course, if other lock mechanisms are chosen by the
developer, then native support may or may not be necessary (i.e. locking license to an

IP address of the host will not require native support and therefore would be platform

independent).

How fast is the Protection! back-end response to user request?

Q. With respect to a license file or a serial number that requires activation, if the user

decides to 'activate online' will the back-end respond

immediately and send out an activated license file/sn?

A. This would generally depend on when/how/where your back-end is deployed. Even
though in general I would answer yes, but you would agree, that there are a lot of

variables that could delay distribution of an activated license file. All of these variables

are 100% in your control, however. These variable could be your backend business logic

(what would happen when the customer requests a license file, would you do this
automatically or would you require management/sales approval, would you tie

Protection! backend with your sales-force, CRM, ERP applications, etc, etc, etc...) and of

course variables like backend server horsepower, network connections, etc, etc, etc...)

Is it possible to transfer a license to another computer system after it has been

activated and locked?

No. The license key file would be locked to a specific user system. Default

implementation locks the license to a network card MAC address of the user's system.
However other, user-definable attributes could be used by you, as a developer, as well.

Is it possible to embed the license file inside an application archive jar file?

You can Specify a resource folder attribute for your product using the Edit Product

Dialog | Locations | Resource Folder edit box to let Protection! know where to find the
license in your application archive (e.g. /com/acme/app)

Use Protection! code snippet to get a template of the class that should be used to

embed Protection! in your application.

Generate a new license; make an application archive containing your application classes
and the license file.

That's it! Now you can deploy your application with the bundled license. Please note -

you can use both licenses (embedded and located

within the file system). This way you can deploy your application with a bundled
evaluation license (for example) and when your customer

purchases a commercial license, he/she should simply copy their license to your

<application_root>/license/ folder, for example.

I don't really understand the concept of "activation"
Q. I don't really understand the concept of "activation" in the license generation panel:

what is the benefit of the activation key if finally you have to send a second license to

your customer?

A. The reason for such an approach is to provide secure storage for the activation key
and to prevent customers from saving it manually. Everything on the customer's

computer needs to be considered insecure (e.g. file system or registry). Therefore, it is

very easy to use a special application to track activity of the protected application - find

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

92

what it saves, when and where. Our approach of placing the activation key into the

license and sending it back to the customer is very safe as the client side is only capable

of decoding licenses, therefore making it impossible to place the activation key into the

license. This process only looks complicated, however. With the help of Protection!

Activation wizards and Protection! Backend it is completely transparent to the customers
and vendors.

Activation process always requires contacting the vendor/publisher either off-line (e.g.

by calling/e-mailing sales) or on-line by using Protection! backend. This allows vendors

to:
 Track actual application deployments. For example, if a bundled evaluation license

requires activation, then each evaluator would have to provide his/her credentials

before using your application

 Implement Floating User licensing model by enabling usage of only the purchased
number of copies by activating only that number of licenses that is specified in the

license’s number of copies attribute

 Implements Named User licensing model by locking the license to a particular

computer

Why does the license return an UNKNOWN_STATE?

This could happen if the developer is simply using License Reader to get a license.

License Reader is responsible only for discovery and decoding of the license. Developers

should be using License Host in order to read and check a license. License Host uses
License Reader, so developers do not need to use (even though they can) License

Reader directly.

Please see licenseHost.checkLicense(...) method and also demo application that

comes with Protection (samples directory) - specifically

DemoCalcProtectionSupport.java.

How can I implement the automatic license generation and activation

mechanism?

This would require use of the Protection! Backend.

Integrity Check Support

Problems with Integrity checking when packaging is changed
Integrity check uses fully qualified class/resource names:

class DemoCalcIntegritySupport

{

 private static final String[] DIGEST_ENTRIES =

 {

 "com/jp/samples/protection/DemoCalcProtectionSupport.class",

 "com/jp/samples/protection/DemoCalcProtectionSupport$1.class"

 };

 public static boolean checkCRC()

 {

 return IntegrityHost.checkStatic(DIGEST_ENTRIES , DIGEST);

 }

}

And of course if packaging is changed the code snippet needs to be modified

accordingly.

Why did Integrity checking fail after classes obfuscation?

Protection! Developers Guide v5
Copyright © 2003-2021 jProductivity L.L.C. http://www. jproductivity.com

93

Because obfuscation changes names and packages of the classes in most cases it is not

possible to find them and so check their integrity. Protection! provides build-in support

of obfuscated code by allowing to specify obfuscator changes log file and use it to find

actual classes/resources to check.

How can I prohibit possible tampering with application code?

Developers can prohibit tempering with a protected application by utilizing the Integrity

verification mechanism. During the product creation, you can assign Integrity checking

to any number of resources in your application. During runtime, the developer can verify
if Integrity values for any of these resources were changed - which would indicate a

potential tampering with the application code. At this point, the developer can apply

his/her own logic, indicating how the developer wants to handle this situation.

Here is the snippet from Protection! User Guide:
"...Integrity verification subsystem allows for the checking and validation that the

designated key classes of the product have not changed. This type of check is done by

comparing the Integrity of these classes with the original value stored somewhere in the

product code, resources or files. This subsystem significantly increases time and effort

needed to diagnose and locate this part of the protection system in order to attempt to
break it...."

	jProductivity LLC
	Contents
	1. Protection! Licensing Toolkit Concepts
	1.1 Key Concepts
	1.1.1 License File
	1.1.2 Protection! Control Center
	1.1.3 Secret Storage

	1.2 Protection! Process
	1.2.1 Reading a License
	1.2.2 Checking License
	1.2.3 Checking Integrity
	1.2.4 Conclusion

	2. Adding Protection! Support to the Java Applications
	2.1 Protection! Initialization
	2.1.1 Source Code
	2.1.2 Launcher

	2.2 Handling Protection! Events
	2.3 Calling License Check

	3. Adding Protection! Support to Native Applications
	3.1 Launching Protection Support Process
	3.1.1 Tweaking Protection Support Appearance
	3.1.2 Exiting Protection Support Application

	3.2 Catching Protection Support Error Output
	3.3 Catching Protection Support Output
	3.4 Handling Protection Support Events
	3.5 Transferring Commands to Protection Support

	4. License Types
	5. License Reading
	5.1 License Reader
	5.2 Locating License
	5.3 Reading and Decoding License
	FIPS Support

	5.4 Listening License Reader Events
	5.5 Resolving License Reader Issues
	5.6 Upgrading License

	6. License Checking
	6.1 License Host
	6.2 Analyzing License Checking Results
	6.3 Listening License Host Events
	6.4 License Agreement Acceptance
	6.5 Working with Secret Storages
	6.5.1 FileSecretStorage Implementation
	6.5.2 PreferencesSecretStorage Implementation
	6.5.3 JarFileSecretStorage Implementation

	6.6 Resolving License Host Issues
	6.7 License Expiration
	6.7.1 Date Based License Expiration
	6.7.2 Usage Based License Expiration

	6.8 User Licensing Models
	6.8.1 Named User Licensing Model
	Lock Attributes
	Activation Keys Generation
	Grace Period
	License Deactivation

	6.8.2 Floating User Licensing Model
	Handling Number of Copies Violation Event
	Check Host Policy
	Releasing Network Check Resources

	6.8.3 Floating and Named User Licensing Models - Licensing Server
	Adding Licensing Server Support
	Listening License Lock Expired Event
	Listening for License Lock Revoked Event
	Grace Period
	Check Host Policy
	Checking-out Licenses for Offline Use
	Releasing Licensing Server Resources
	Main/Supplemental License Model
	Handling License Updates or Change Users Allocation
	Checking the Status of Licensing Server

	6.9 License Kind

	7. Working with the Licensing Server
	7.1 Registering Licensing Server Connection
	7.2 Using the LicensingServiceSupport
	7.3 Direct Use of Licensing Service
	7.3.1 Getting Licensing Service
	7.3.2 Using Licensing Services
	7.3.3 Releasing Licensing Service

	8. Integrity Verification
	8.1 Source Runtime Configuration
	8.2 Resource Runtime Configuration
	8.3 File Runtime Configuration

	9. Licensing Using Protection! Backend
	9.1 Registering the LicensingFacade Implementation
	9.2 Getting the LicensingFacade
	9.3 Using the LicensingFacade
	9.4 Using the LicensingFacade to Implement Licensing of the Web Applications

	10. Deploying Protected Applications
	10.1 Required Redistributables
	10.2 Redistributables to allow support for “Named User” licensing model that locks the license to CPU or motherboard ID's. (Optional)
	10.3 Redistributables to Work with Protection! Web Services Application (Optional)
	10.4 Redistributables to Allow Support for Named User Licensing Model (Deprecated)

	11. Protection! Backend
	11.1 Working with Products Storage
	11.2 Encoding and Writing Licenses
	11.2.1 Licensing Protection! Backend API
	11.2.2 Using License Writer

	11.3 Validating Deactivation Result
	11.4 Working with Serial Numbers
	11.4.1 Serial Numbers Generation
	11.4.2 Serial Numbers Parsing

	11.5 Orders Parsing
	11.5.1 Single Order Parsing
	11.5.2 Bulk Orders Parsing
	11.5.3 Using Generic Order Format

	11.6 Working with Protection! WS Application
	11.6.1 Configuring Protection! WS Application
	11.6.2 Deploying Protection! Web Services Application to Compatible Container
	11.6.3 Extending Protection! Web Services Application
	Writing Extension Plug-in
	login(…) Method Implementation
	checkGetLicenseEnabled(…) Method Implementation
	checkActivateLicenseEnabled (…) Method Implementation
	checkDeactivateLicenseEnabled (…) Method Implementation
	onGetLicense() Method Implementation
	onActivateLicense(…) Method Implementation
	deliver() Method Implementation
	Extending LicensingFacadeExtensionSupport
	Logging Licensing Activities
	Deploying Plug-in Implementation

	11.7 Deploying Protection! Backend Applications
	11.7.1 Protection! Library Redistributables
	11.7.2 Redistributables to Allow Support for License Delivery via E-mail (Optional)

	12. Frequently Asked Questions
	General questions
	Protection! Back-end and Web Services
	License specific questions
	Integrity Check Support

