Productivity! — The name speaks for itself

Productivity! 2.0

for Borland® JBuilder®

User Manual

http://www.jproductivity.com

Copyright (c) 2000-2004 jProductivity L.L.C. All rights reserved.
JBuilder is registered trademark of Borland Software Corporation.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc in the
United States and other countries.

Other brand and product names are trademarks or registered trademarks of their respective owners.

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 2

Contents

PRODUCTIVITY! OVERVIEWV ittt e ettt ettt ettt ettt e ane s 7
INSTALLATION INSTRUCT IONS ...ttt ettt ettt et ettt e e e e e et e e aeeaneanes 9
Productivity! Key INStallation..........oiiii ettt et r e aaaes 9

[(03 A (o @] o =Y T =Y | 9

[103 YA T 1 1= = L)Y 1 = 9
Productivity! Help INStallation.........cooiiiiii e ettt ettt et e e eaeeaanes 9
LICENSE AQIEEIMENT ACCEPIANCE ... u ettt ettt ettt ettt et et e e e et e et et e e aa e eaa e eaneeaaneeaaneennes 9
UnNINStalling ProdUCTIVITY ! it ettt ettt ettt et e et e et e eaneraneaanneann 10
(1@ 11V, 1= N I 1= I I 11
g @1 18 L@ I AV T 128 B O T 0 12
CommMON INSIGNTS FEATUIES ...ttt et ettt ettt ettt e et e e e e aeeaanees 16
(0707 01 (=) M1V Ced o 1 5T PP 16

[LS 1 ST T o o T o 16
Code GENEFALION TOOIS ...t ettt ettt ettt ettt e e et e et e aeeaneas 17
L@ = 1SS 1 1= T |) 17
(04 1= TS 1 1= Te | 1 AN o e o 18

5] g oY1V T To I NN F= V7 To = a [] o 1N 2= T 1= 18

(0 o) 1 o] @ ES T 1T o 11 g 1o 1= 0T 2 19

g g 07T o g =T 0N o 1 a T T | o | 19
Code Changes SYNCRIONIZATIONttt e ettt e et e e aeeeaaes 20

L@ 0T T0] IS D T=T o T=T 5T =T o[V P 20
Override.Insight and Constructor. INSIGNT ... e 20
Code Changes SYNCRIONIZATIONttt et et et et e e ee e aeeaaaas 21

(@ o) uTo] aET B1=T o 1T o [=T 0 T3 R 22
SMANT. INSTANTIATE ... ettt ettt ettt ettt et ettt e aas 22
ShOWING NaVigation Paneottt ettt et e e e et et e e ta e eaan e e aaneeanas 23

(0 o) 1 o] ES T 1T o 11 g 1o 1= 0T 2 23

(€T BT =) O =T L (o P 23
INTrodUCE.CONSTIUCTOE — PrOl ...ttt ettt e aaeas 25
L@ 0T T0] g ST D T=T o T=T T =T o[V P 26
Delegate. INSIgNT — PrOl .. ettt 26
L@ 0T T0] ST D T=T o T=T 5T =T 0TV P 27
Easy.JavaDoc and Easy.JavaDOoC.INSIGNT ... e 27
S S0 = 1Y 2= 11D Lo o P 28
EaSy.JavaDoC. INSIgNT. ... e e, 28

(0 o) £ o] ES T D11 o 11 g T 1= 0T 29
o0 o T] L PP 29
ReNAmME ASSISTaNt - PrOl ... ettt 29
(0 o) 1 o] ES T 1T o 11 g T 1= 0 T2 30

F ST] =T o | A e 1 30
L@ o T T0] g ST D T=T o T=T 5T =T o[V 33

P A V7= T Tet=To B I T D T R o o] PP 33
(@ o) HTo] aET B 1T o 1T o [=T 0 T3 R 34
LIS 51 S 1 S 01 PP 34
(FaTugeTo[UToduTo] ol o T Ir=T] G H O] o o =7 o | SR P 35
Task LISt USer INterfacCettt et aee s 35
Maintaining Tasks USING Task LISt ... ettt e e e e aaeeaaas 37

[RL=T 0 T T = = PP 38

(0 o) 1 o] ES T 1T o 11 g T 1= 0 T2 38

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 3

S F= T =T] o = U (=TT o] 39

PredefinNed FIelas. ettt 41
DT =251 T] 3 42
S 0P A =T] o = U =TT 1 g =] T o 47
“ON the Fly” Smart TeMPIAtES ...ttt ettt et et et e e eaneaaaeeaanes 48
(0 o) 1 o] ES T 1T o 11 o T 1= 0T 2 49
S = L = LY 2= 1D Lo Lo o 50
Smart.JavabDoC UsSer INTEITACE ... ittt eaaas 51
JavaDoc Editing USiNg SMaArt.JAVADOC ...ttt et et r et et e eaeeaaneeas 53
SMArt.JavabDoC TOOIDAKo e 55
JavaDocC Errors Highlightingcoe oo et aeeaas 59
SMArt.JavabDOC SNOIMTCULSttt ettt et ettt ettt e et e e e e e e e eanens 60
o L1 (o] gl =l oY g F=T g ot =T o g V=T o | K= 62
S F= T O [o oY T= T e [Nl = o 62
o= TS (Y o Lo o 62
(007) Y74 O U | S Y 1 1 T o = 62
R o X o o o P 62
Lo o T =1 = o3 1] o PP 63

L0 1T oo 7= e 1N 110] T | o 1 S 63
(@ o) uTo] aET B1=T o 1T o [=T 0 T3 R 63
T = U ST =] [T e o B o 1 P 63
] 0 T T A U = e o 0 64
Thumbnail GUEEEr - PrOl ... et e aaeas 65
Classes Highlght - Prol ... ettt et et e e et e e ae e e eane e eaneeaanees 66
Advanced Text VIeW STatus - Prol 67
S P T =] = (o = 68
(0 o) 1 o] @ ES T 1T o 11 g T 1= 0 T 2 68
Matching.Code. Highlight - Prol ... ettt aeeeas 68
L@ 0T uT0] IS D T=T o T=T 5T =T o[V P 69
Smart.Braces. Highlight - Prol e e e aaees 69
(@ o) £ To] 0 ET B 1T o 11 g [=T 0 T3 R 70
Changes. Highlight - Prol ... ettt e e aeeaanees 70
Current Line Highlight - Prol. . e ettt e eaeeaanees 70
Classes and Methods Separator - PrO! ... et aanees 71
D] Faia] o] g0}V =T o aT=T o | ST 72
Project View SYNCRIONIZEer - Prol e ettt et et e e e e eaneann 72
(0 o) 1 o] ES T 1T o 11 g T 1= 0 T 2 73
Structure View SYNCRIONIZer - Prol L. e e e aaees 73
Change. Read O Ny - Prol ... ettt 73
N E= V4 To F= X A o] o T 10T R P 75
BrOWSE. INS O .. e ettt 75
BrowWSse. INSIGNT ACTIONS ...ttt et e ettt e ettt e e e e e e anes 75

(@ o) A To] R BT o 11 g [=T 0 T3 A 76
BrOWSE . IMBIMIDEIS ...t ettt ettt 76
L 1Y € LS 111 = AV T T = 77
(0 o) 1 o] ES T 1T o 11 g T 1= 0T 2 77
Search Results and References Highlight - Prol ... e 77
Persistent BOOKMarKS - Prol e 78
Persistent.BoOKMArKS. NAVIQATE. oot ettt aeeeaaas 79
Manage BOOKMArkKS DialOgottt aas 80
View Navigator and Navigator.Insight - Prol. ... e 81
LT {0 o 8= To] o I I Yo - PP 83
L = TR 1 1= T] o 83
[N E2 Y4 T F= Lo i T == o = 83

L 1Y € 1S 1T 10 1= o 84

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Integration With Other INSIgNtS i e et eaas 84

(0 o) £ To] ES T D11 o 11 g T 1= 0T 85

LY €11 111 1= o 85

(0 o) 1 o] ES T 1T o 11 o T 1= 0 T 2 85

(@] 0 1 (4 i 1 g 1= T | o 85

(0 o) 1 o] ES T 1T o 11 o T 1= 0T 2 86
PRODU CT IV I TY L OP T EON S Lttt ettt et ettt ettt ettt e e e e e e e e e eaneanenn 87
o] =Tod e o] o1=T g U L= B 1= 1 Lo o O P 88
LT =T = | = T 88
(070 L0 [T ST Y4 L= - T =P 89
NNV 2 1 o Lo T [P 91
L= T = - T 93
=TSy 1S3 = L) S = T = 95
JLICe T] £ == U = 97
=T T3 o] gl @] o 1 [0 T 07 F-1 o T 98
Smart.Braces Options (EAItOr OPLiONS) ..cuuueeiiiiiiie it e et et e et ean e ean e aaaeeaanes 98
LT =] = LI = T 100

L0 ST [= T P 103

(D ToT oS o= o = 105
QL0 T]S o= T TRl o o 106
ASSISTANT Page — ProOl ... e 108
SMArt.JaVvaDOC Page — ProOl . e e 109
Smart. TemMpPlates Page — Prol ... e ettt e 110

Edit Template Dialog — Prolttt ettt ettt e e e e aanes 112
LT o T=T = LI = T = 112

L@ o) 1o @ F- T == Vo T 114
L= o [T == T = 115

5] gle] g Co U KT o= T = PN 117

Edit Template Field Dialog — Prol ... e e e e 118
] @ o) A To] o E= 30 51 T= (o o 121
PRODUCTIVITY! KEY BINDINGS ...ttt et et ettt ettt et e et e e eeeeens 123
Key Bindings for CUA, Brief and Visual Studio KEYmMapscoouiiiiiiiiii it eaeeaen 124
Key Bindings for Emacs, Macintosh and Macintosh Code Warrior Keymapscccccvieeiieannn. 126
PRODUCTIVITY! TOOLS FCONS ..ttt ettt e et et ettt ettt ettt et et e a e eaneaneas 129
KNOWN ISSUES AND LIMIT AT EONS ittt ettt ettt et aneas 131
PRODUCTIVITY! FEEDBACK ..ttt ettt ettt ettt aaeas 133

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Tables

Table 1 ProduUCHIVITY ! TOOIS ...ttt ettt ettt e et et e e e ee e aaeeaaas 12
Table 2 Productivity! Key Bindings for CUA, Brief and Visual Studio keymapsccccceviiennns 124
Table 3 Productivity! Key Key Bindings for Emacs, Macintosh and Macintosh Code Warrior keymaps

.. 126
LIz o1 Lo A e To LU T V) Y2 N e 0] o 1= 129
Productivity! User Manual 6

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! Overview

Productivity! Overview

Productivity! is a genuine and rich set of tools intended to greatly simplify routine
coding and navigation operations. As a result, it allows significantly greater
development productivity. All Productivity! tools are carefully designed and tuned to
minimize efforts to invoke and use them so you can enjoy the friendly environment
Productivity! offers.

With Productivity! tools:

e Be aware of any errors in your code and get assistance to fix them!

e Be always on schedule with help of Task List!

e Write bulletproof documentation for your code!

e Easily reuse your favorite code fragments!

e Write well-composed and easy maintainable code!

e Forget about typing your imports!

e Forget about annoying dialogs and Wizards while you are coding!

e Discover context and navigate through it!

e Use hyperlinks to surf and to get informed!

¢ Navigate freely through your classes, methods, fields and even editing points!
¢ Obtain quick help on classes and methods exactly where and when you need!
e Add super interfaces, change super classes in several simple steps!

e Override methods and constructors in a couple of clicks!

e Add access methods for you fields instantly!

e Use your own unique naming standards!

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 7

¢ And finally, forget that you are using Productivity! - just enjoy your favorite IDE,
interesting work and your superior performance!

Use Productivity! to add unleashed power to your JBuilder environment!

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Installation instructions

Installation instructions

To install Productivity! you should unpack the archive you've downloaded and copy
productivity.jar (productivityPro.jar for Professional Edition) to the lib/ext
directory under your JBuilder installation.

NOTE: If you already have Productivity! installed in your system and you are going to install
Productivity! Pro, please remove it since all functionality of Productivity! is included to
Productivity! Pro. Also, you should remove previous versions of

Productivity!/Productivity! Pro (if any).

Productivity! Key Installation

Productivity! requires a key file, which enables the Productivity! functionality. In
standard edition this file is named productivity.key, while in Professional Edition file
name is productivityPro.key.

How to Obtain Key File

In some cases, the evaluation key file can be found in the downloaded archive.
Otherwise, please visit http://www.jproductivity.com or contact
mailto:sales@jproductivity.com to obtain an evaluation or commercial key.

How to Install Key File

The key file should be located in the same directory as used by JBuilder for storing its
preferences and license. The location of this directory depends on the operating system
installed on your computer.

Browse your HOME directory (you can find it using the Home button in the JBuilder
Open File dialog). In the home directory you'll find the .jbuilderX (or .jbuilder9,
.Jbuilder8, .jbuilder7) depending on your version of JBuilder) subdirectory, where the
key file should be placed.

Another way to find the location where the Productivity! key file should be placed is
starting up JBuilder with Productivity! installed. If there is no key file, Productivity! will
inform you of the fact with the appropriate message dialog; from this dialog, you can
conclude about the location of the key file.

To install the key file, just copy the key file (productivity.key or
productivityPro.key) to the location as specified above.

Productivity! Help Installation

To install documentation for Productivity! please copy productivity_docs.jar to the
doc directory under your JBuilder installation.

License Agreement Acceptance

After the first start of JBuilder with Productivity! Installed you’ll be prompted to accept
the Productivity! License Agreement. It should be accepted to allow running any
Productivity! Tools. You can reject the Productivity! License Agreement and can accept
it later using the Help | About Productivity! Dialog.

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 9

http://www.jproductivity.com/
mailto:sales@jproductivity.com

Uninstalling Productivity!

To uninstall Productivity! please close JBuilder and remove copied jars and the key file.

Productivity! User Manual 10

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Compatibility

Compatibility

Productivity! 2.0 supports JBuilder version X only while Productivity! 1.x supports any
JBuilder version from 4 up to 9. It doesn’t impose big limitations related to JBuilder
edition or host platform.

Please note, to run Productivity! Pro 1.X under JBuilder4 the xerces.jar should be
installed in the system and path to it should be stated in the classpath.

Productivity! Pro edition is known to be not compatible or providing functionality that
overlaps with the following JBuilder Open Tools:

e Syntax Checker (by Steven Lee);

e Extended Highlighting (by Volker Malzahn);

¢ Selection Margin 2.01 (by Karl Tauber);

e Number Line (by Gillmer Derge);

¢ Highlight Matching Parenthesis, Brace or Bracket (by Gillmer Derge);
e Java Node Icon Tip (by Keith Wood);

e Refactorlt (by Agris Software AS);

e Text Drag Drop (by Karl Tauber);

e ChangeReadOnly (by Luke Hutterman);

e Tag Read Only (by Fabrizio Giustina);

e Structure Synchronizer (by Brian Sayatovic);

¢ Synchronize ProjectView and Broser selection (by Torsten Welches);
e Where Am I? By David Pierron;

e JbPropStructure (by Angus Chan);

e Clipboard Manager (by Jacob Roberson);

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 11

Productivity! Tools

Productivity! Tools

Productivity! Offers a powerful set of tools intended to reduce routine coding tasks.
These tools are carefully designed to allow solving such tasks with minimum efforts and
in minimal time.

The following tools are available after installing Productivity!.

NOTE: The exact set of tools included depends on edition — the Pro! mark highlights tools
available in Productivity! Professional Edition only.

All tools offered by Productivity! belong to the following groups:
e Code Generation Tools
e Power Tools
e Editor Enhancements
e IDE improvements
e Navigation Tools
e Information Tools

Please refer the table below to find more about content of these groups. Also, there you
can find short description of every tool included into Productivity!

Table 1 Productivity! Pro Tools

Tool Description

Code Generation Tools

Pro! Delegate.Insight Delegate.Insight provides an easy way to generate
methods, which implementations are delegated to another
object (delegate).

Pro! Introduce.Constructor Introduce.Constructor allows easy generation of
constructors intended to initialize appropriate fields of the
class.

Class.Insight Class.Insight allows quick finding Java classes with short

names matching the word at the cursor position, and
inserting the class name found into the cursor position as
well as inserting import statement.

Implement.Insight Implement.Insight allows quick finding Java classes with
short names matching the word at the cursor position and
using them either as a super interface or as a super class.

Override.Insight Override.Insight allows quick finding methods to override
with names matching the word at the cursor position or a
typed word, and overriding them into the class at the cursor

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 12

Productivity! Tools

position.

Constructor.Insight

Constructor.Insight allows quick overriding class
constructors.

Easy.JavaDoc

Easy.JavaDoc allows easy and convenient generating
templates for JavaDoc comments for a particular method or
class.

Smart.Instantiate

Smart.Instantiate is an additional Class.Insight
functionality that allows adding instantiation of a particular
class or interface.

GetSet.Creator

GetSet.Creator is a tool that allows easy creation of
accessors and/or mutators for selected fields of a class.

Power Tools

Pro! Rename Assistant

This tool simplifies identifiers renaming by introducing
"in-place" rename approach.

Pro! Assistants

The set of assistants those show information about the
particular issue and/or list of possible actions to complete.

Pro! Task List

The Task List is a tool that allows viewing and managing the
list of tasks, code issues and to-do’s.

Pro! Advanced To-Do’s

The Advanced To Do’s tool is further expansion of the To Do
comments concept by treating them as tasks with set of
attributes like priority, status, owner etc.

Pro! Smart.Templates

The Smart.Templates is advanced template engine that
provides set of sophisticated features, like linked fields,
calculated fields; expression and functions supports. It
introduces advanced code templates those can be easily
adapted to particular coding style coding style.

Pro! Smart.JavaDoc

The Smart.JavaDoc tool is additional viewer for Java file
node that offers JavaDoc authoring in mode that is very
close to WYSIWYG one.

Editor Enhancements

Smart.Braces

The Smart.Braces is a tool that allows easy creation of
closing braces while you are typing.

Pro! Code Folding
Enhancements

Ability to fold Java Doc comments and collapse all of them
(by using special button on the view toolbar.

Pro! Classes Highlight

Allows highlighting classes used in the code.

Pro! Thumbnail Gutter

The Thumbnail Gutter represents additional gutter placed
near the vertical scrollbar of editor pane and allows showing
gutter marks for the whole source file as well as navigate to
them.

Pro! Smart.Clipboard

The Smart.Clipboard represents several tools used for
provide more efficient clipboard operations. These tools

Productivity! User Manual

13

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! Tools

include clipboard management, swapping context of
clipboard with current selection, inserting pasted Java code
with correct indent along with required import statements
etc.

Pro! Smart.Gutter

The Smart.Gutter is additional gutter placed near standard
JBuilder editor gutter and is used for showing various hints
concerning corresponding code in editor by arranging
appropriate gutter marks.

Pro! Smart.Braces.Highlight

The Smart.Braces.Highlight tool providers matching braces
highlight and navigation operations as well as showing code
fragment that corresponds to appropriate brace.

Pro! Matching.Code.Highlight

The Matching.Code.Highlight tool performs highlighting of
code matching to one at caret position as well as displaying
appropriate code fragment in the popup window.

Pro! Changes Highlight

The Changes Highlight Highlights changed lines if Java
source on the gutter.

Pro! Methods and Classes
Separator

The Methods and Classes Separator tool visually separates
classes and methods from each other by painting horizontal
line at the top of declaration.

Pro! Current Line Highlight

The Current Line Highlight tool highlights the line under
cursor in the current editor with appropriate background
color.

Pro! Smart.Selection

The Smart.Selection tool offers sophisticated code selection
functionality that is based on n structure of Java program. It
allows expanding/narrowing selection incrementally using
appropriate code elements as well as quickly selection of
whole statement, code block, method or class.

Pro! Advanced Text View Status
Bar

The Advanced Text View Status Bar represents a
replacement of standard component that allows viewing of
class and method for current caret position, caret offset,
and lines count.

IDE Improvements

Pro! Project View Synchronizer

This tool provides functionality for synchronizing of
currently active file with the corresponding node in the
JBuilder Project View.

Pro! Java Structure
Synchronizer

The Java Structure Synchronizer allows synchronizing the
Java Structure View with current caret position in the editor.

Pro! Change.ReadOnly

The Change.ReadOnly allows easy viewing and managing
the read-only status for file nodes.

Navigation Tools

Pro! Persistent.Bookmarks

ThePersistent.Bookmarks tool offers advanced bookmarks
functionality. These bookmarks are persistent between
sessions of JBuilder, are associated not only with editor, but
also with file and JBuilder project.

Productivity! User Manual

14

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! Tools

Pro! View Navigator

The View Navigator tool allows quick navigation by source
elements (classes, methods, fields), issues/errors, editing
points or search results.

Pro! Navigator.Insight

The Navigator.Insight is specialized insight used for quick
controlling of View Navigator.

Browse.Insight

The Browse.Insight tool allows quick finding Java classes
with short names matching the word at the cursor position
and browsing them or the appropriate help topics.

Browse.Members

The Browse.Members tool allows quick finding members
belonging to the current discovered context and browsing
them.

Hyperlink.Navigate

Hyperlink.Navigate is a tool that allows easy and convenient
navigation through symbols definitions basing on the
concept of hyperlinks.

Pro! Search Results and
References Highlight

This tool is intended to highlight in the editor various things
found during search or find references operations.

Pro! Local References Highlight

This tool allows finding local references of the symbol under
caret and highlighting them.

Information Tools

Help.Insight

Help.Insight allows easy viewing help topics, if any, for the
identifier at the cursor position. Also, it provides quick help
for items shown in JBuilder built-in Member Insight and
Productivity! insights.

Hyperlink.Help

Hyperlink.Help allows easy and convenient viewing help
topics for particular symbols.

Context.Insight

Context.Insight is a tool that allows you to check context of
the current cursor position. Context.Insight collects
information about all classes and methods and shows it
using the insight popup window.

Productivity! User Manual

15

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! Tools

Common Insights Features

Most of Productivity! Insights share the following approaches.

Context Switching

During invocation, any context dependent Insight analyses context structure and
selects the target for modification: the deepest class or method found for the cursor
position.

The Context label shows the full-qualified name of this class or method. If there are
several classes or methods found in the context path you can choose a different class as
a target. Use Switch Context up to and Switch Context down to buttons or keyboard
shortcuts Alt+Up or Alt+Down, respectively, to select a class or methods as the target;
the Context label will reflect the changes. This functionality is useful when cursor is
placed within an inner class while you need to execute appropriate actions to the outer
one.

Help Support

To view help press the appropriate key mapped to the help action in the current keymap
(typically, this is F1).

If an Insight shows the list of members and there is a member (either class, method or
field) selected in the list, the Help Viewer will show the appropriate documentation page
for this member (if any). If the members list is empty or there is no member selected,
the help on the Insight will be shown. You can use the Help button in the Navigation
Pane to invoke help on the Insight directly.

Help.Insight is an Alternative way of getting help on a selected member. To allow
Help.Insight invocation when using the Insight you should turn on the Editor Options |
Productivity! | Usage | Integrate Help.Insight with Productivity! Insights checkbox.
With this option turned on, just select a member and wait until Help.Insight popup will
show the appropriate JavaDoc help page (if any).

You can also force Help.Insight invocation using the shortcut Shift+F1 (CUA). You can
specify Help.Insight invocation delay using the Editor Options | Productivity! | Delays |
Help.Insight Invocation Delay slider.

Productivity! User Manual 16

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Code Generation Tools

Productivity! offers powerful set of code generation tools intended to simplify routing
but very common operations like:

e Inserting appropriate import statements for class (using short class name) —
the Class.Insight tool;

¢ Implementing interface or extending class — the Implement.Insight tool;
e Overriding methods — the Override.Insight tool;

e Creation of constructor with the same signature as one defined in super
class — the Constructor.lInsight tool;

¢ Instantiation of variable - the Smart.Instantiate tool;
e Creating of getter/setter methods — the GetSet.Creator tool;

e Creating of constructor used to initialize set of class fields — the
Introduce.Constructor tool;

e Creating of proxy delegate methods those actually calls methods of class
member — the Delegate.Insight tool

e Creation of default JavaDoc comment — the Easy.JavaDoc tool;
e Import statements optimization — the Imports.Beautify tool.

All these tools provide very simple and intuitive interface and allow you to get required
task complete using minimal amount of actions needed.

Class.Insight

Class.Insight - Forget about typing your import statements!

Class.Insight allows quick finding Java classes with short names matching the word at
the cursor position, and inserting there the class name found and its import statement.
To choose a class from several possible variants, it employs a popup window similar to
other Javalnsight popups (Memberlnsight, Parameterinsight etc.). You don't need to
type import statements manually - just use Class.Insight to find and insert the required
class and let it make all other job for you!

The Class.Insight backend caches all the required information about classes containing
in project, JDK and project required libraries to speedup usage. The cache build is
initiated only on the first Class.Insight invocation so it doesn't affect JBuilder startup
and a project opening time.

The Class.Insight saves the cache in the project directory while project closing and
loads the cache from disk when the project is opened next time. The cache file is named
<Project Name=>.cache and it can be easily removed when unneeded us Productivity!
will automatically recreate it before the next Class.Insight use.

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 17

Productivity! — Power Tools

S5 Centerms = ; -
Dimension G99 Javax.swng. fTabbedPana | Lel):
Dimension| Browse Class: DT4| |v X | =
if (frame abhedb: £ ; swing
frame3i] @ JTable 8] Javax. swing

if (frame] @ JTahleHea ~ahle
frameSize.width = soiaavax.swing.table. JTableHeader

frame.setLocation((screeniize.width - framelize.width) / 2, [(screeniize

frame.setVisible(true) ;

Figure 1 Class.Insight Popup Window

When editing a file, place the cursor over the word you want to expand as a class name
(or at a blank space) and press Ctrl+Alt+Space (Ctrl+Alt+H) (CUA) to invoke
Class.Insight. The Class.Insight popup will be shown with the list of classes matching
the word at the cursor position. You can select a class navigating through the list with
the help of the usual keyboard. An Alternative way to do it is to continue typing the
word; the list selection will be changed to produce the closest match possible.

Class.Insight Actions

On selecting a class, you may choose from several options with the help of the following
shortcuts:

Enter: - Class.Insight replaces the word at the cursor position with a class name and
adds the appropriate import statement;

Ctrl+Enter: - Class.Insight replaces the word at the cursor position with a full-qualified
class name;

Alt+Enter: - Class.Insight switches between importing a particular class and the whole
package.

Shift+Enter: - Class.Insight produces a code for instantiation of the selected class
variable.

If there are no matches found, Java.lnsight - Select Class dialog is shown. Select a class
in this dialog and press OK. The Class.Insight will replace (or just insert) the word at the
cursor position with a selected class name adding the appropriate import statement.

Showing Navigation Pane

You can switch Class.Insight popup to show the Navigation Pane by turning off the
Editor Options | Productivity! | Usage | Show Class.Insight popup as list checkbox. With
this option turned off, Class.Insight popup will be shown with the Navigation Pane, that
allows using Class.Insight popup even if there is no word at the cursor position or if
there are no matching classes found. To find matches, type a word in the Use Class edit
box and Class.Insight will dynamically rearrange the classes' list to show the matching
ones.

Productivity! User Manual 18

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Options Dependency

Please note that the set of classes shown in the Class.Insight list depends on Packages
Exclusion settings on the Project Properties | Productivity! | General property page.

Import statements are generated basing on Imports Generation settings on the Editor
Options | Productivity! | General property page. There you can also customize other
Class.Insight options, such as Search Options, Sort Classes By, Autocomplete and
Productivity! Insights Usage

Implement.Insight

Implement.Insight allows quick finding of Java classes with short names matching the
word at the cursor position and using them either as a super interface or super class for
the class at the cursor position.

clazzs Untitledl

{
public Untitledli()

{ ﬂﬁ oM. Aasang famoias, watromea. Cnftiedl |

\ Irnplernent Inkerface: _ 1/)(@« ¥ | =

Figure 2 Implement.Insight Popup Window

When editing a file, place the cursor within the bounds of the class you want to add a
super interface or set a super class to, and press Ctrl+Alt+1 (CUA) to invoke
Implement.Insight. The Implement.Insight popup will be shown with the list of classes
matching the word at the cursor position. The list may be empty if there are no
matching classes though. To find matches, type the word in the Implement Interface
edit box and Implement.Insight will dynamically rearrange the classes' list to show the
matching ones.

You can select a class navigating through the list with the help of the usual keyboard. An
Alternative way to do it is to continue typing the word; the list selection will be changed
to produce the closest match possible.

Press the Enter key when you find the required class and Implement.Insight will add
this class to the list of super interfaces or set it as the super class for the target one.
Implement.Insight will also write all the methods defined in the interface or all the
abstract methods defined in the class (if you have selected an interface and a class,
respectively).

If you have selected a class (not an interface) and the target one already has a super
class you will be prompted to confirm modifications.

Also, there is a possibility of invoking the built-in Implement Interface Wizard. You can
use the appropriate button in the top left corner of the popup.

Productivity! User Manual 19

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

public class Untitledl implements Funnahle
{

public Tntitledl()
i
}

public woid runi)

i
A%%Atodo: Tmplement thiz run() method*/
throw new ThsupportedliperationException("Method runi) not yet implemented.™);

Figure 3 Code Generated by Implement.Insight

The figure above illustrates code generated by Implement.Insight.

Code Changes Synchronization

Implement.Insight analyses changes in all dependant source files and correctly reflects
them during generation of abstract methods implementations. But for most of the cases
you need to compile all dependant classes before invocation of Implement.Insight. If
the required class is not compiled yet or the required methods are not found in the
compiled class, these errors will be shown in the Status View.

Options Dependency

Please note that the set of classes shown in Implement.Insight list depends on
Packages Exclusion settings on the Project Properties | Productivity! | General property
page. Also there you can customize Code Generation Options, which allow you to adjust
the code style for the generated methods code.

Import statements will be generated basing on Imports Generation settings on the
Editor Options | Productivity! | General property page. There you can also customize
other Implement.Insight options, such as Search Options and Sort Classes By.

Override.Insight and Constructor.Insight

Override.Insight allows quick finding of methods and constructors to override with
names matching a word at the cursor position or a typed word and overriding them in
the class at the cursor position.

Productivity! User Manual 20

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

clazz Tntitledl implements Eevlistener

{

H t';:f fom. farand. sampias. sakomea. Lt dl |

Overtide Methaods: EI v X e ¥ |83

public wvoid kevyBeleaszed(EeyEvent e)
{
'

Figure 4 Override.lnsight Popup Window

When editing a file, place the cursor within the bounds of the class you want to override
methods for, and press Ctrl+M (CUA) to invoke Override.Insight. The Override.Insight
popup will be shown with the list of methods those match the word at the cursor
position. The list may be empty if there are no matching methods though. To find
matches, type a word in the Override Methods edit box and Override.Insight will
dynamically rearrange the methods’ list to show the matching ones. You can also leave
the Override Methods edit box blank to view all the methods to override.
Override.Insight highlights the methods with names exactly matching the typed word
with bold font and the abstract methods with italic font.

In addition to the methods inherited from the super class, Override.Insight shows the
methods defined in the interfaces but not implemented directly by the target class.

You can select a method, either one or any, navigating through the list with the help of
the usual keyboard. An Alternative way to do it is to continue typing the word; the list
selection will be changed to produce the closest match possible.

Press the Enter key when you select the required methods and Override.Insight will
override them and add calls to the appropriate methods of the super class, if needed.

You can call Override.Insight with constructors only using the shortcut Ctrl+Shift+M
(CUA).

Also, there is a possibility of invoking the built-in Override Methods Wizard. You can use
the appropriate button in the left top corner of the popup to invoke it.

Code Changes Synchronization

Override.Insight analyses changes in all dependant source files and correctly reflects
them in the methods list. But in most cases you need to compile all dependant classes
before invocating Override.Insight. If the required class is not compiled yet or the
required methods are not found in the compiled class, these errors will be shown in the
Status View.

Productivity! User Manual 21

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Options Dependency

Using the Project Properties | Productivity! | General property page you can customize
Code Generation Options, which allow you to adjust the code style for the generated
methods code.

Import statements are generated basing on Imports Generation settings on the Editor
Options | Productivity! | General property page. There you also can customize other
Override.Insight options, such as Search Options and Sort Classes By.

Smart.Instantiate

Smart.Instantiate is an additional functionality of Class.Insight that allows adding
instantiation of a particular class by invoking Class.Insight, selecting the class and
pressing Shift+Enter.

Smart.Instantiate recognizes the need to define a variable or just to create a new
object. For example, when you type List fList = new List(100); and use
Smart.Instantiate to create an Arraylist instance, Class.Insight replaces only the
appropriate class name and preserves the variable definition and constructor
parameters. You will get the following List fList = new ArrayList(100);

The same behavior is exhibited when using Smart.Instantiate to create a new instance
and as a parameter to a method call. In other cases, Smart.Instantiate inserts definition
and initialization of the variable with a new instance of the selected class.

Eevl
) Java. ant. avent. fapd isfenar |
Instantiate Class: keyl] T v 4=

leylistener
2 MeniEevListener @ Jawax . swing. event

'

public void kevBeleased (EeyEwvent e)

i
'

Figure 5 Smart.Instantiate Popup Window

When an interface is selected to be instantiated, Smart.Instantiate automatically
inserts implementation of the interface as an anonymous inner class. You can control
this behavior using the Project Properties | Class.Insight | General property page.

An Alternative way to get Smart.Instantiate executed is using the shortcut Alt+1 (CUA)
that invokes a particular Smart.Instantiate popup. This popup is similar to the
Class.Insight one but it doesn't require holding the Shift key to activate
Smart.Instantiate - you just need to select a class and press the Enter key to instantiate
it.

A couple of samples of illustrating what Smart.Instantiate can do for you!

Productivity! User Manual 29

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Funnah

Figure 6 Code Before Invocation of Smart.Instantiate

Funmable runnable = new Funnable()

i
public woid runi)

i
FEE@Eodor Implement this rumy() method#s
throw new UnsupportedliperationException(Method run() not yet implemented.™):

Figure 7 Code After Invocation of Smart.Instantiate

Showing Navigation Pane

You can switch the Smart.Instantiate popup to show the Navigation Pane by turning off
the Editor Options | Productivity! | Usage | Show Class.Insight popup as list checkbox.
With this option turned off, Smart.Instantiate popup will be shown with the Navigation
Pane, that allow to use Smart.Instantiate even if there is no word at the cursor position
or if there are no classes matching it. To find matches, type a word in the Instantiate
Class edit box and Smart.Instantiate will dynamically rearrange the classes’ list to show
the matching ones.

Options Dependency

Please note that the set of classes shown in the Smart.Instantiate list depends on
Packages Exclusion settings on the Project Properties | Productivity! | General property

page.

Import statements are generated basing on Imports Generation settings on the Editor
Options | Productivity! | General property page. There you can also customize other
options of Smart.Instantiate, such as Search Options, Sort Classes By, Autocomplete
and Productivity! Insights Usage.

Using the Project Properties | Productivity! | General property page you can customize
Code Generation Options, which allow you to adjust the code style for the generated
methods code.

GetSet.Creator

GetSet.Creator is a tool that allows easy creation of accessors and/or mutators for
selected fields of a class.

When editing a file, press Alt+Shift+A (CUA) to invoke GetSet.Creator Insight. The
GetSet.Creator popup will be shown with the list of fields matching a word at the cursor
position. The list may be empty if there are no matching fields though. To find matches,
type a word in the Fields edit box and GetSet.Creator will dynamically rearrange the list
of fields to show the matching ones. You can also leave the Fields edit box blank to view
all fields.

Productivity! User Manual 23

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

JHera jMermuFile = new JMenu();
JHermalten JjHMernuFileExit = new JMernultem();
JHer1 jHMenuHelpn = new JMenui):

JHermiIten JjHMernuHelpibout = new JMernaltem() ;

A4 Conatradg
public HElJ

b com.borand. samples. walrome. WaltomaSrame |
Field: e | v X|+ % |l&-

JHermiBar

cnableFve W JMenuFile JMenu
try { 1l JMerFileExit JMenulten

ibInit :i:/ JMenuHelpn JMenn
1 i:/ JMenuHe lpbdhout TMenulten

catch (Exception e) {

Figure 8 GetSet.Creator Popup Window

GetSet.Creator highlights the fields with names exactly matching the typed word using
bold font.

GetSet.Creator analyses all the fields and all the methods those may be considered as
accessor or mutator ones and removes certain fields from the list if appropriate
methods are already exist.

You can select a field, either one or any, navigating through the list with the help of the
usual keyboard. An Alternative way to do it is to continue typing the word; the list
selection will be changed to produce the closest match possible.

Press the Enter key when you select the required fields(s) and GetSet.Creator will
generate applicable accessors and (or) mutators to it (you can select all items in the list
using the Ctrl+A shortcut). When generating a method, GetSet.Creator analyses the
current class as well as all its super classes and super interfaces, so it can call the
appropriate method of the super class or skip particular method generation in case of
any contradictions.

There is an ability to invoke GetSet.Creator in the mode that allow generating either
accessors or mutators methods only using the Alt+Shift+G or Alt+Shift+S (CUA)
shortcuts, respectively.

public JMenuEar getJI-IenuBalrl [
return jMenuBarl: I

public woid setJMenuEarl (JMenuBar jMenuBarlValue)] |
jHermiBarl = jMernuBarlvValue;

Figure 9 Code Generated by GetSet.Creator

In general, GetSet.Creator uses Java Beans convention for naming the accessor and
mutator methods. But if your code style assumes using prefixes or (and) suffixes for
fields naming, GetSet.Creator allows you to use them without distortion of method

Productivity! User Manual

24

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

names - you just need to specify correct prefixes and suffixes in the Project Properties
| Productivity! | Code Style | Fields Naming options group. For example, if you specify
prefix m_ and name your field as m_count , GetSet.Creator generates methods as
getCount() and setCount(...).

GetSet.Creator can generate JavaDoc comments during methods generation. To
control this, please use the options on the Project Properties | Productivity! | JavaDoc

property page.

Introduce.Constructor — Pro!

NOTE:

Productivity! User Manual

Introduce.Constructor is a tool that allows easy generation of constructors those are
intended to initialize selected class' fields. It can be invoked using Alt+Shift+C (CUA)
shortcut. The Introduce.Constructor popup will be shown with the list of fields matching
a word at the cursor position. The list may be empty if there are no matching fields
though. To find matches, type a word in the Fields edit box and Introduce.Constructor
will dynamically rearrange the list of fields to show the matching ones. The Fields edit
box can be blank that allows viewing all fields.

JHenulten jMenuHelpdbout = new JHenaltem():
‘:«,\I; com. horand. zampies, welrome. WalromeaSramea |
JDialog aDi T
g Choose Fields: jMenu| L | X| & @
public syncl ‘¥ iMenuEBar TMenaBar {
abialog. E-f/ jHMenuFile JHenu
) Ty yMenuFileExit TMernulten
Ty yMenuHelp TMenu
public Wel _i:/ JMenuHelpihout JMenulten
enableEvents (AWTEvent. WINDOW _EVENT MA3SK) ;

Figure 10 Introduce.Constructor Popup Window

JHenulten jMenuHelpibout = new JMermlItem():

e cam. bonEng. rampias, walome, Walromaframea |
Choose Fields: jMenuBart] | v X| & %

JDlialog alil

public syndRdlEGHEEr) THMenuBar RN
abialaodg. P JMermFile THenn
} P JMenuFil 3
i:/ JMenuHed) sMeny JMenuHelp ‘
public Tel 17 JMerHE Ypaoour JMemlten

enableEwents (AWTEwent. WINDOW_EVENT_MASK) ;

Figure 11 Selection of Fields Should be Initialized

One or more fields can be selected using the fields’ list.

The order of fields’ selection exactly defines the definition order of constructor
parameters and, in turn, the order of fields’ initialization.

25

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

As soon as fields to initialize are selected pressing the Enter key closes
Introduce.Constructor popup and introduces constructor that initializes all selected
fields.

puhlic| WelcomeFrame [TMenuBar jManuBarl, TMenu jMenuFile, dMermultem jMenuFileExit)
thiz. jMenuEarl = jMenuEarl:
this. jMermFile = jMenuFile;
thiz. jMenuFileExit = jMermFileExit;

Figure 12 Code Generated by Introduce.Constructor

Please note that if constructor with the same signature is already exists,
Introduce.Constructor popup will not be closed and appropriate error message will be
displayed in the Status Bar.

Options Dependency

The Project Properties | Productivity! | Code Style property page allows customizing
code style and placement for the generated constructors. Settings for Java Doc
comments those can be optionally generated during constructors’ introducing can be
customized using the Project Properties | Productivity! | Java Doc property page.

Delegate.Insight — Pro!

Productivity! User Manual

The Delegate.Insight tool provides an easy way to generate methods those actual
implementations are delegated to another object (delegate). To invoke
Delegate.Insight please use Alt+Shift+M (CUA) shortcut.

After invocation, the Delegate.Insight popup is shown with the list of members (fields
and methods) matching a word at the cursor position. The list may be empty if there are
no matching or suitable members though. To find matches, type a word in the Choose
Delegate edit box and Delegate.Insight will dynamically rearrange the list of members
to show the matching ones. The Choose Delegate edit box can be blank that allows
viewing of all members.

JMenultenm jMernuHelpdbout = new JMenuItenmi();

Jhialog abiald i com. borfand, samolers, watromea. Wetomasramea

Choose Delegate: [| v X| & &

2 Construct R _
public Welcome % add (Componens oo
enahleEwvents % add(5tring, lic Component add(Cowponent comp)

% add [Component ,int) Component

Ly |
JbInit():

Figure 13 Delegate.lnsight Popup Window — Selecting a Delegate

As soon as a member to become the delegate is selected (multiple selection is not
supported by this tool) and press the Enter key, the Delegate.Insight popup shows the

26

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

list of methods belonging to the delegate and suitable to be introduced in the target
class.

JHeralten jMenuHelpabout = new JHMemultenm();

Jhialog abialg g com.horand. Famolas, welome. WelomaSame |

A Construct
public Welcom
enahleEvents (AWTEvent. WINDOW _EVENT MASE) ;

try |

Figure 14 Delegate.Insight Popup Window — Selecting Methods

To find matches please type a word in the Choose Methods edit box and
Delegate.Insight will dynamically rearrange the list of methods to show the matching
ones. The Choose Method edit box can be blank that allows viewing all methods.

Jhialog abialog = nall:

public synchronized woid addConponentlistener (Componentlistener 1)
abialog. addConponentlistener|{l);

Figure 15 Code Generated by Delegate.Insight

Delegate.Insight correctly recognizes delegate modifiers and generates static methods
if required (preserving other modifiers as well). It utilizes all major delegate patterns
and allows using the following entities as delegates:
¢ Field declared either in currently edited class or in any of its parents;
e Execution result of method without parameters;
e Execution result of method with parameters. In this case Delegate.Insight
generates methods, which have merged list of parameters - one part is needed

to obtain a delegate and another one to be passed to delegates' methods call.

Options Dependency

The Project Properties | Productivity! | Code Style property page allows customizing
code style and placement for the generated methods. Settings for Java Doc comments
those can be optionally generated during methods’ generation can be customized using
the Project Properties | Productivity! | Java Doc property page.

Easy.JavaDoc and Easy.JavaDoc.Insight

Easy.JavaDoc is a tool that allows easy and convenient generating of templates for
JavaDoc comments on particular methods or classes (except for the anonymous ones).

Productivity! User Manual 27

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

NOTE:

Productivity! User Manual

Productivity! — Power Tools

Easy.JavaDoc

To invoke Easy.JavaDoc, place the cursor within a method or class for which you want
to generate JavaDoc and press Ctrl+D (CUA). JavaDoc comment will be automatically
inserted just before the method. Since the method comments contain tags for all
declared fields, exceptions can be thrown by the method. That's really easy!

Easy.JavaDoc.Insight

Easy.JavaDoc.Insight allows choosing of several methods or classes for JavaDoc
generation.

FSiFile | Exit action performed
public woid jMermuFileExit _actionPerformed({ActionEwent e) |
Svstem.exit(0);

H @ com borighd sampies welcome. eicomeFrame
hembers: | e
SiHelp | Aboy lM | v X o
public void 7 jI-Iemeileh;-:it. actionPerformed (ActionEvent)
1 * JMenuHelpibout actionPerformed (ActionEvent) woid

Figure 16 Easy.JavaDoc.Insight Popup Window

Press Ctrl+Shift+D (CUA) to invoke Easy.JavaDoc.Insight. The Easy.JavaDoc.Insight
popup will be shown with the list of members (methods and/or classes) matching the
word typed in the Members edit box. The list may be empty if there are no matching
members though. To find matches, type a word in the Members edit box and
Easy.JavaDoc.Insight will dynamically rearrange the members' list to show the
matching ones. If you leave the Members edit box blank, all members within the current
context are shown.

Unlike other Insights, Easy.JavaDoc.Insight doesn't merely employ the word at the
cursor position; it rather uses the name for the method or class at the cursor position.
This approach allows easy generation of JavaDoc comments for the method or class at
the cursor position.

..,-'*#

* TOD0: Insert description of the method here.....

* [dparam e

i

public woid jMernuFileExit actionPerformed{ictionEwvent e)] {
System.exit(0)

Figure 17 Code Generated by Easy.JavaDoc

You can select a member navigating through the list with the help of the usual
keyboard. An Alternative way to do it is to continue typing the word; the list selection
will be changed to produce the closest match possible.

28

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools
On selecting the members press Enter to generate JavaDoc covering all of them.

Options Dependency

You may adjust content of JavaDoc generated by Easy.JavaDoc using Project Options |
Productivity! | Easy.JavaDoc. By default, Easy.JavaDoc generates @return, @param
and @throws tags. You may also specify that it should generate @author, @see and
@since tags. To enable or disable their generation, please open the Project Options |
Productivity! | Easy.JavaDoc property page and select the appropriate check boxes.
Please note that if you select generation of the @author tag, the Easy.JavaDoc inserts
the tag's value as it is specified on the Project Properties | General property page.

In addition, on the same page you can specify the policy to be used by Easy.JavaDoc if
JavaDoc comment already exists for a method or class. Based on your selection,
Easy.JavaDoc can overwrite old comments, skip generation or ask your confirmation on
comments rewriting. Note that these options may affect the members' list content in
Easy.JavaDoc.Insight popup - if the option to skip members with existing JavaDoc is
specified, all such members will be excluded from the members' list.

Power Tools

Productivity! includes set of advanced tools those make Productivity! really unique. As
all other Productivity! tools, these ones are intended to dramatically increase
productivity of Java developer.

These tools include:

e Rename Assistant — unique tool that simplifies identifiers renaming by
introducing "in-place” rename approach;

e Assistants — rich set of code and information assistants those provide quick
information about code issues and, if possible, set of choices those allow
problem resolving;

e Task List — the tool that allows viewing and managing list containing tasks,
code issues and to-dos.

¢ Smart.Templates — the advanced code templates engine with ability to live
update of related fields while typing.

e Smart.JavaDoc — the tool that allows JavaDoc authoring in mode is very
close to WYSIWYG one. It is available as an additional viewer for Java file
node.

Rename Assistant - Pro!

Rename Assistant is a tool intended to simplify identifiers renaming. It introduces
"in-place" editing approach and let the user to enter a new name and then choose
whether hi/she likes to refactor, simply rename or skip changes of identifier name. To
see Rename Assistant in action just place the caret to an identifier you wish to rename
and start renaming it simply by typing new name. Rename Assistant pops up right in the
place of your identifier; you can recognize it by the lines shown on the top and bottom
of identifier being renamed and Rename Assistant icon placed on gutter. When new
name is entered it's possible to:

Productivity! User Manual 29

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools
e Press the Enter key to rename identifier using refactoring procedures.
e Press the Ctrl+Enter key to simply rename identifier.

e Press the Esc key or mouse click outside Rename Assistant to skip any
changes.

import java.awt.™;
import Javax.swing. UIManacer:
import com. sun.tools. javac.vi. tree, Tres

ropublic class HewlWelcomedpp |
hoolean packFrame = false;

¥ Construct the application

Figure 18 Rename Assistant

It's possible to tune Rename Assistant behavior using the Editor Preferences |
Productivity! | Assistant property page. There is ability to quickly turn assistant on/off
using the Enable Rename Assistant button on the view toolbar.

Please note that Rename Assistant works only if there are no syntax errors in the source
code.

Options Dependency

You can control Rename Assistant behavior using the Editor Options | Productivity! |
Assistant property page.

Assistant - Pro!

The Assistant tool provides visual feedback in the editor about any code issue by
highlighting corresponding symbols using styled and colored line. By default, errors,
warnings and To-Do's are highlighted using red, green and gray wavy line respectively.
Each issue has description associated with it and description text for every issue can be
shown in the hint window that appears if mouse cursor is placed under the code issue.

Assistant provides special Insight window, which can automatically pop-up in the
location of code issue nearest to the caret position and shows information about the
particular issue or list of possible actions to complete (resolve) it.

There are two kinds of Assistants: Info Assistant and Code Assistant.

The Info Assistant shows description for the issue if there are no actions that may be
performed to resolve the issue. It is useful as it can provide more convenient feedback
about the code issue than Structure View as it always visible and placed near caret and
probably near the point of the user view.

Productivity! User Manual 30

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

AA0verridden so we can exit when window is closed
protected void processlindowEvent(WindowEwent 1 {
super.processlindovEventie) ;
if (e.getID| == WindowEwent.WINDOW CLOSTNG) {

Iysten. e I
0 ilegal start of expression | ';‘]

Figure 19 Info Assistant

The Code Assistant shows description for the issue along with the list of actions those
can help to resolve it. Code Assistant provides most convenient way to resolve issues as
it allows fixing of issue without having to leave current cursor position. It allows fixing
of the issue manually or by invoking of appropriate tool. As soon as issue is resolved, it
restores original caret position. The user is able to fix the issue quickly using prompted
shortcut or just using mouse. There is also ability to popup and focus Code Assistant
using Alt-Enter (CUA) keystroke and use usual keys to navigate through the fix actions
and the Enter key to choose (invoke) required one.

FAf0verridden =0 we can exit whenh window iz closed
protected woid processlindowEvent (WindowEwent e)
super . processlindowEvent (e

if (e.getID(] == WindowEw WTHMTATT CT ST
System. exit(0) ; Y expected | &=
b @ Add missing " Shift+Erter

: W

Figure 20 Code Assistant

Another way to fix issue is using context popup menu and this way is useful when Code
Assistant is disabled.

TP oL JOrd: A-IIs -7

publi e :
Liat Q Reference to a class List iz ambiguous. k @ jeRe.util.List
TPar} P! Productivity! b @ java.awt List
Bord clflo FoUL |1
JHern i
THer
JTHe E, Paste o

H ||| P Select All

elzomeFramm Cloze

Figure 21 Code Assistant Integrated Into Context Menu

Assistant can be configured to automatically fix certain types of errors without
prompting to the user. The following errors currently can be automatically fixed:

1. Type cast errors - by adding required type cast.

Productivity! User Manual 31

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

2. Unknown class errors - by adding appropriate import statement. It's possible to
specify policy for each short class name that exactly defines what action should
be done to make this name known in the code.

It is usual thing when several classes with the same short names are be defined in
different packages (java.util.List and java.awt.List is the good example). To simplify
working with such classes it's possible to specify a list of most frequently used classes
using the Project Properties | Productivity! | Assistant property page. Such list is used
to determine particular class to import or to show in the top of the list in case of
existence of several different candidates.

It's possible to disable assistants either globally (for all types of issues) using menu in
the bottom right corner of Thumbnail Gutter or disable assistant for only specific group
of issues.

"l

[w Info Assistant
[v Code Assistant
DN

A | windified | lnoedt

Figure 22 Disabling/ZEnabling Assistants’ Menu

Below are several examples of Code Assistant:

import jawva.awt.¥;
import java.util.*;

public class WelcomeFrame extends JFrame !
List children = mll;

ol comtontDaonas

G Reference to a class List iz ambiguous. | &
@ java.util.List Shift+Enter

@ java.awt List Cirl+-A 1+
emiltTen JHemIFIIeEX1T = new ermlten()

orderLayout() ;

1

Figure 23 Ambiguous Names Issue Code Assistant

A Construct the frame
public WelcomeFrameMethod() |

ET1 =
tr G invalid method declaration; return type required | -
@ Let it be "void' Shift+Erter

i @ Let it return 'Ohject’ Ciel+ A+

Productivity! User Manual 32
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Figure 24 Invalid method declaration issue Code Assistant

public class WelcomeFrame extends JFrame
List children| = null;

mal comtorntDarna .

[LJ Class List is unknown, | =
@ java.util.List Shift+Erter
@ com.zuntools javac v8 bl List Crel+- AR+
@ javaawwt List Ctrl+af+2

Borderlayout() ;
[

raltem()

JMenulten jMenuHelpdbout = new JMenultenm() ;

Figure 25 Unknown Class Issue Code Assistant

Options Dependency

You can control Assistants behavior using the Editor Options | Productivity! | Assistant
property page. The Project Properties | Productivity |Assistant property page can be
used to specify project dependent Assistant options.

Advanced To-Do’s - Pro!

The Advanced To-Do tool expands the concept of To-Do comments by treating them as
tasks rather then simple entities those can hold only textual information. The following
attributes can be assigned to To-Do task:

e Priority;

e Completion Status;

e Owner;

e Start Date;

e Due Date;

e Reminder;

e URL.
All these attributes are encoded in the body of To-Do, so concept of Advanced To Do’s
doesn’t require using of any additional storage. Tools those work with To-Do’s e.g.

Advanced Java Structure View) are aware of having such attributes and are able to
correctly show only description of To-Do comment.

Productivity! User Manual 33

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

!
AEE Btodo Remorve debug output f§l=Andrew SazonowH#l=35) *7

Figure 26 Advanced To-Do and Assistant

Any custom attributes can be directly added or changed manually in the source code
according to the supported syntax.

The most convenient way of working with To-Do’s is using Task List. The Task List
allows navigation to a selected To-Do, changing of any To-Do’s attributes (certainly
excluding file URL) and removing the To-Do from the source file.

The To-Do Assistant allows execution of the most helpful actions for the To-Do at the
caret position. Those actions include Complete, Edit and Remove the current To-Do
task.

Options Dependency

You can control the behavior of Assistants using the Editor Options | Productivity! |
Assistant property page.

Task List - Pro!

The Task List tool allows viewing and managing the list of tasks. Task List is embedded
into JBuilder Message Pane. To show or hide Task List please use View | Task List menu
item or appropriate menu item in editor context menu.

Prochictivity jpx (2] [1] ¢ | 2] Description LRL € Cwner StertDate | Du.. | A [E
2;:3::[::“ =HR state for line numbers file: VS| LG -
> 3 | B [[] |SHOULD THIS CALL BE CALLED? filer JHES| Lo ... [}
FS[};S, 3 | B [[] [SHOULD WE PROCESS THIS filer JHESG| Lo ...]
& % é dD:V o | B[] |eheck if we need to vist nods with andther typ... file SE%Lac... [}
® [g] doceditor | [] |how it can be possible that node iz not visted &... (file B Lac... [l
) @ aditor B |[v] R besmeariflafeosaling Ysdhe— Andreyy Sazonoy 52002 539, [}
® @ actions B | [] |Check classes and method for not allowed modi... Andrewy Sazonoy | S2002 539, (5200 [
o @ vt B | [] |Check GutterEx repainting on the end of file Andrewy Sazonoy | SI2202 128, [} | |
o @ tesd| ® | [_] |Check that LineMumber expires as soon az vers... Andrewy Sazonow 32302 4:57... 1 |4
B Foterdd ™| ¥ | [|Add expiration for &dvanced JavaStructure and. .. Andrevy Sazonov|S2302 4:35... [|
4] |] B | [|Aclebpropsrty thabwil controltrest-hiding 2ndrew Sazonow|52702 1:40... O+
Task List
[Total Task Count: 553

Productivity! User Manual 34

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Figure 27 Task List Panel

Introduction to Tasks’ Concept

Each task is an entity that represents some work to be done.

The following attributes are belong to each task:
e Priority — can be one of the following: Low, Medium, High, Highest;
e Completion Status — specifies whether the task is completed or not;
e Description — specifies the description of the task;
e Owner — specifies the user name which owns the task;
e Start Date — specifies the date the task was/should be started;
e Due Date — specifies the date when the task should be done;

¢ Reminder Status — specifies whether reminder should be shown to the user
about the task near to the due date.

The following task types are currently supported:

e Code Issues — errors and warnings collected from the file currently opened in
the editor. They are interpreted as tasks because all errors and most of
warnings should be fixed in order to successfully build source file;

e To-Do’s — all @todo comments collected from the file currently opened in the
editor and (optionally) collected for the whole project. All tasks collected for the
whole project are cached in the file with “.todos” extension stored in the project
folder. Task List tries to keep this cache up-to-date (as soon as file is opened)
though there is ability to rebuild all of them manually;

e General Tasks — simple persistent tasks intended to general use. They are not
related to any file but rather are related to the whole project. All those tasks are
stored in the file with “.tasks” extension stored in the project folder.

Task List User Interface

The Task List consists of toolbar which provides controls those allow maintaining and
controlling Task List and Task List View which shows tasks. Task List View can be either
Plain or Outlined one.

The Plain View shows the table in which each task occupies one row and each column
represents appropriate single attribute of task. There is ability to resize, move or hide
columns as well as to specify sorting order by clicking to desired column header.

Outlined View consists of Tasks Folder Tree View at the left and Plain View at the right
of Task List. Tasks Folder Tree View allows selection of tasks grouping and filtering
criteria and it acts as “Master” while Plain View acts, as “Details” is their relationship.
The following folders are available:

Productivity! User Manual 35

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools
@ Project Folder — the root for all other folders;
1 Overdue Tasks —contains all overdue tasks;
Code Issues — contains code issues;
Tasks — contains General Tasks;

= To Do’s — contains all To-Do’s outlined by packages of classes those To-Do’s
are belonging to.

It is possible to specify filters, sorting order, columns set, columns placement and sizes
individually for each view and folder. All these settings are persistent between JBuilder
sessions.

The Task List provides ability to synchronize selected task with file it is related to (if
any). To open file associated with the task use double-click on the task in task list table.

The following table outlines actions available on the toolbar:

Table 2 Task List Toobar Actions

Icon

Description

Toggles Plain/Outlined Views

Specifies if tasks details view will include tasks from descendants of the
currently selected package

Expands all nodes in tree

Collapses all nodes in tree

Allows creation of new tasks

Removes currently selected task/s

Refreshes current view and optionally refreshes To-Do’s for the whole project

Allows applying filters for the current view

Allows choosing visible columns for the current view.

Specifies whether todo comments should be shown for the whole project or for
active file only

Specifies whether completed tasks should be visible

£

Enables/Disables reminders tracking

Productivity! User Manual

36

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

0 Specifies whether reminders should be shown only for tasks assigned to the
current user

Maintaining Tasks Using Task List

The Task List allows creation of new tasks, removal of existing ones and changing
attributes of them. To change task attributes, Task List offers in-place editing
capabilities and provides appropriate cell editor for the each attribute.

The following table shows operations applicable to each task type.

Figure 28 Changing Priority of the Task

£l | 1 | | De=scription »

= ';__ port for JBE
= Yt Highest b resolved, 5
=] ¥ High find element
= 0 Medium [-F Helphianagg
= l%ate of srcCla
= v Low ate of srcCla

Table 3 Task Operations

Operation
Task Type
New Change Attributes Remove
Code lIssue No ‘Completed’ attribute™ No
General Task Yes Yes Yes
To-Do Yes** Yes** Yes**

* - This operation is applicable if there is at least one “Complete” action available for the
particular Code Issue;

** - These operations are applicable if Java file this To-Do is belonging to is being edited
and this file is not read-only one;

Changing of ‘Completed’ attribute for To-Do’s and General Tasks doesn’t lead to any
other actions rather then simple assigning of appropriate value to the task. This
behavior is completely different for Code Issues as the nature of Code Issues is

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

37

Productivity! — Power Tools

different. To make Code Issue completed, the reason of it should be removed or the
problem should be fixed someway. Thus Code Issue can be completed if there are
actions those can fix it and to complete it one of them should executed as well.

For example, if code issue is “unknown class” or “ambiguous” one, it's possible to select
correct class from list of options, fix the issue and thus complete the task.

H ETErence 10 a CIass LIST IS amalguoLs.
E I T to & class Lizt i= ambig

2" o javautilist P4

ES N | gasian

.%5\ ' @ java.awt List ion

3o ! [[] |unclased character literal

Figure 29 Fixing Code Issues Using Task List

Reminders

There is ability to setup reminders for tasks which are not completed yet and have due
date assigned. To setup reminder, the appropriate attribute of required task should be

checked. The £ button should be pressed to enable reminders tracking. It is possible
to instruct Task List to show reminders for tasks, which owned by current user only. To

turn this mode on the Pa button should be pressed.

The Reminder dialog is displayed when the time gap between current date and due date
for particular task is less then specified value. In addition, there is an optional ability to
play sound when reminder is occurring.

Poductivil |

-Q_ Reminder - Thu Jul 18 0003857 GWMT+H02:00 2002

Check clas=es and method for not allowed mod Dizmizs
ifiers (transient and volatile]

Goto Task...

Enooze and remind again; |1 min b

Figure 30 Reminder Dialog

The following actions are available from this dialog:
¢ Navigate to the particular task using the Go to Task button;
¢ Dismiss reminder using the Dismiss button;

e Snooze reminder for the certain period of time using the Snooze button and
appropriate combobox.

The Task List hides all the shown Reminder dialogs for project dependent tasks when
the user closes particular project or selects another one.

Options Dependency

You can tune reminders behavior using the IDE Options | Productivity property page.

Productivity! User Manual 38

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Smart.Templates - Pro!

This tool introduces advanced templates concept and offers a lot of new possibilities and
usability features. Smart.Templates may be invoked using usual Ctrl+J (CUA) shortcut
or by typing template name and pressing Tab (by default) key. There is also possibility
to expand last used template by pressing Ctrl+Shift+J (CUA) shortcut. This is useful if
template is defined as one that may store and utilize user input collected during
previous invocation.

The purpose of this tool is ability to maintain, easy find and paste frequently used code
snippets (templates hereafter) to the currently editing document.

JBuilder built-in templates represents usual code fragment, which pastes “as is” and
may be optionally formatted according to project code style (built-in templates only).
Such a templates concept suits well for simple needs while leaving lots of manual
modifications of pasted code for most of complicate cases.

Smart.Templates provides all functionality offered by build-in JBuilder templates and
correctly indents the code fragment and optionally formats it according to current
indent level and braces’ style. To minimaze efforts needed to fit templates to the
developers’ needs the concept of advanced templates is used. The main difference of
this concept is ability to specify template fields inside the code snippet.

Each field is represented by its own name enclosued by # sign written right in the code
snippet. In this case template acts as “live” running form rather then simple code
fragment. On template expansion, all the code outside fields is pasted exactly as it is
defined, while fields are represented by a set of editors those allows entering values
using usual way. Each field “editor” has each own border and the focused one has the
special border, which highlights it.

There is ability to navigate through all the fields using the Tab and Shift+Tab
shortcuts. The Enter and Shift+Enter shortcuts allow navigating through the fields
skipping ones with the same type.

public wvoid processlisti{List aListTolterate)
{
int zize = .sizei]:
for (int i = 0; i £ =2ize: iH+H) |
Object object = (0Object) alistT.get(i):

Figure 31 Smart Template with Fields

It’s possible to invoke another tools like Member Insight for selecting values of template
fields.

Productivity! User Manual 39

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

public woid processlistilist alistTolterate)
{
Iterator iter = EListTDﬂ.iteratDri]:

while (iter.h corn borland, sarmples welcame WelcomeFratme

Ubject oblel o ngqustable clazs|~|
S AdjustmentEvent clazz :

} S Adjustmentlistensr class

; %y al istToIterate

} # AlphaComposite class

J AlphaComnpositeContext clazs

S AncestorNotifier class

J AnimatingControlsiurface class

J Animatingiurface clazz
J ArithmeticException clazz|w|

Figure 32 Entering Field Value Using JBuilder Member Insight

The following major features are applicable to template fields:

e All the template fields of same name are automatically synchronized that allow
entering field value only once;

e Ability to specify default value or initialization expression for a template field.
The default value or result of expression execution is automatically assigned to
the field on template expansion;

e Ability to specify calculated expression for a template field. This allows
dynamically calculate field value to reflect changes made by the user in this field
or in the other ones;

¢ Ability to specify “change” expression for a template field. This allows making
some actions after the field is changed and/or calculated.

e Ability to store values entered in the template fields and load previously stored
values on the next template invocation. This allows to fill fields automatically
during the consecutive template calls;

e Ability to utilize selected block of code as field value.

Expanded tamplate enters the “running” state after invocation and user is able to fill
template fiels. A running template can be completed by pressing Esc key, changing
code outside of any template fields (if appropriate option is turned on) or by filling all
fields and using Enter key to navigate between them.

After the completion of running template, all the code written in the field “editor’ is
pasted directly to the document and the editor caret is optionally placed to the position
specified by location of predefined field #|# (if one is included into template definition).

In addition, the Smart.Templates tool introduces the following features:

Productivity! User Manual 40

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

e Ability to shorten full-qualified names for classes stated in the template and
adding appropriate import statements to the source file;

e Ability to use preprocessor instructions those allow dynamic building of
template code using conditional and iteration statements;

e Ability to format template code according to the current project code style and
current indent level;

e Ability to specify supported file types (Java, HML etc) for any template;

e Ability to specify supported context (e.g. "symbol”, "comment” or "string") for
any template;

e Ability to assign keyboard shortcut for any template. Shortcut assignments for
different key maps are supported too.

Predefined Fields

The following table outlines predefined template fields which always available to any
template definition.

Productivity! User Manual a1

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Table 4 Predefined Template Fields

Field Name Description

| Specifies the location should be used for caret after template
completion

selBlock Inserts content of the code block has been selected before the
template expansion.

selBlock.asComment | Inserts a code block has been selected before the template
expansion and transforms it into a Java block comment.

selBlock.asString Inserts a code block has been selected before the template
expansion and correctly transforms it to a Java string.

currentDate Inserts current date string.

currentDateTime Insert current date and time string.

Expressions

The most powerful feature of Smart.Templates is ability to specify expressions needed
to be evaluated during template execution. This allows developing truly “smart” and
dynamic templates those can be easy adapted to developers’ needs. In general, any
expression should conform to expressions’ definition rules in Java language and can
contains only the following lexemes:

e String, character and numeric literals;

e + -* / operators;

e Variables;

e Functions calls;

e Open and close parenthesis;
The Smart.Templates provides automatic types conversion during evaluation of
expressions so expression can contains literals, variables and functions with different

types and/or return types. If possible, all these different types will be correctly cased.

The following functions are available:

Utility
Functions pynctions are included into this group are intended to suit miscellaneous utility

purposes.

String getLocalVariableName(String aType)

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 42

Template
Functions

Productivity! User Manual

Productivity! — Power Tools

Composes variable name based on passed variable type.
Parameters: aType — string that represents variable type

Return: name for variable based on variable type

String getVariablelnitValue(String aType)
Composes variable initialization value based on passed variable type.
Parameters: aType — variable type

Return: variable initialization value. It will be —1 for numeric types, false for boolean
and null for any other Java type.

Functions are included into this group allow gaining access to any field within running
template.

String getFieldVvalue(String aName)
Returns current value of the template field
Parameters: aName — name of the field

Return: value of the field; null if field with passed name is not found

void saveFieldValue(String aName)
Saves field value as string to allow it future use

Parameters: aName — name of the field

void saveFieldValueAsInteger(String aName)
Saves field value as integer to allow it future use

Parameters: aName — name of the field

Object loadFieldValue(String aName, Object aDefaultValue)
Obtains previously saved field value

Parameters:

43

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

System
Functions

String
Functions

Productivity! User Manual

Productivity! — Power Tools

aName — name of the field

aDefaultValue — optional default value

Return: previously saved field value; if field value was not saved before it returns
aDefaultValue or null if default value is not specified.

Functions from this group provide access to some of system properties and resources.

String getSystemProperty(String aName)
Obtains the value of system property
Parameters: aName — name of system property to get

Return: value of system property; null if property with such name is not found

String getDate(String aFormat)
Obtains string representation of current date according to optional format

Parameters: aFormat — optional parameter that defines the form of date output. The
valid values are “SHORT”, “MEDIUM”, “LONG”, “FULL".

Return: string representation of current date

String getDateTime(String aDateFormat, String aTimeFormat)
Obtains string representation of current date and time according to optional format
Parameters:

aDateFormat — optional parameter that defines the form of date output. The valid
values are “SHORT”, “MEDIUM”, “LONG”, “FULL".

aTimeFormat — optional parameter that defines the form of time output. The valid
values are “SHORT”, “MEDIUM”, “LONG”, “FULL".

Return: string representation of current date

Functions from this group provide different string manipulation routines.

String toUpper(String aString)

Converts passed string to upper case.

44

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Parameters: aString — string need to be converted

Return: string converted to upper case

String toLower(String aString)
Converts passed string to lower case.

Parameters: aString — string need to be converted

Return: string converted to lower case

String toggleCase(String aString)

Converts passed string so each character of it became toggled from lower case to upper
one and vice versa.

Parameters: aString — string need to be converted

Return: converted string

String toConst(String aliteralValue)

Composes name for string literal based on passed literal value. It is composed as “C”
style constant where locations of underscores are match to locations of characters in
upper case in the literal value.

Parameters: aliteralValue — string literal value

Return: name for string literal based on literal value

String fromConst(String aLiteralName)

Composes value for string literal based on passed literal name using the same rules as
for composing name for literal based on its value.

Parameters: aliteralName — string literal name

Return: value for string literal based on literal name

String capitalize(String aString)

Productivity! User Manual a5

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Capitalizes the first letter of passed string.

Parameters: aString — string to capitalize

Return: capitalized string value

String deCapitalize(String aString)
Decapitalizes the first letter of passed string.

Parameters: aString — string to capitalize

Return: decapitalized string value

String subString(String aString, String aStringToFind)

Obtains a new string by trimming the right part of passed one starting from occurrence
of another string.

Parameters:
aString — string to be trimmed
aStringToFind — string to find

Return: trimmed string value

String getConstPrefix(String aName)
Obtains the prefix from the passed literal name.

Parameters: aName — name of literal

Return: obtained prefix or passed literal name if prefix can’t be obtained

E;?ggrct and Functions included into this group provide access to some properties of the active

Dependant Project and to information about context available for the caret position of the editor.
Functions

String getProjectProperty(String aName)
Obtains the value of property of active project

Parameters: aName — name of project property to get

Return: value of project property; null if property with such name is not found

Productivity! User Manual 46

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

String getFullClassName()
Obtains the name of Java class at caret position

Return: full-qualified name of class

String getClassName()
Obtains the short name of Java class at caret position

Return: short name of class

String getPackageName()

Obtains the package name of Java class at caret position

Return: package name

Smart.Templates.Insight

This tool allows choosing a template to expand. When editing a file, press Ctrl+J (CUA)
to invoke Smart.Templates.Insight. The Smart.Templates.Insight popup will be shown
with the list of template matching a word at the cursor position. The list may be empty
if there are no matching templates though. To find matches, type a word in the
Template edit box and Smart.Templates.Insight will dynamically rearrange the list of
templates to show the matching ones. You can also leave the Template edit box blank
to view all templates.

You can select a template navigating through the list with the help of the usual
keyboard. An alternative way to do it is to continue typing the word; the list selection
will be changed to produce the closest match possible.

Productivity! User Manual a7

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

public woid processlistilist alistTolterate)

1

@ Java | Code |

Template: || | v | =
Integer const declaration

“%» if Insert if statement Expand JBuilder Buit-in Templates

‘%@ ife Insert iffelse statement

‘@&ifn Insert if (war '= mull) statement

c%if:ma Insert if (wvar != null) felse statement

‘% illa Throw IllegaldrgqumentException 1551

‘% ill=s Throw Illegal3tateException

‘Q@ inst if instanceof

‘%inter Public interface definition

‘%»invuke Inwvoke code later -

Figure 33 Smart.Templates.Insight Popup Window

Press the Enter key when you select the template and Smart.Templates.Insight will
expand selected one.

“On the Fly” Smart Templates

The main idea of such templates is ability to quickly generate and use template
definition based on the block of text. All the repetitive tokens from the block those are
not predefined ones will be replaced by the template fields definitions.

This approach allows using templates those need one or several times only without
having to manually manage template definitions.

Dimension screensize = Toolkit.getDefaultToolkit().geticreeniize(] ;
Dimension frameiize = frame.getiize():
if (frameiize.height > screendize.height)
frameSize.height = zcreendize.height:
if (framelize.width > screendize.width)
frameiize.width = screenSize.width;

frame.setlocation((screeniize.width - frameSize.width) / 2, [(screen

Figure 34 Selected Code Fragment will be Copied

Productivity! User Manual 48

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

gcreendize = Toolkit.getDefaultToolkit().geticreeniize();

DPimension frameiize = frame.getiize():
if (framel3ize.height > screeniize.height)
frame3ize.height = screendize.height:
if (frameSize.width > screenbize.width)
frame3ize.width = screenfize.width;
frame.setlLocation((screeniize.width - frameli=ze.width) / 2, [(scre

Figure 35 The Same Code Fragment Inserted Using “On The Fly” Templates

To invoke "On The Fly" template based on the clipboard content please use
Alt+Shift+J (CUA) shortcut. Another option to invoke "On The Fly" template is using
Clipboard.Insight. You just need to select required item from the local clipboard list and
press Ctrl+Enter shortcut to invoke template based on it.

Options Dependency

You can control Smart.Templates behavior and manage the template list using the
Editor Options | Productivity | Smart.Templates property page.

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 49

Productivity! — Power Tools

Smart.JavaDoc - Pro!

Creation and editing of source code documentation is an important part of the
development process. Unfortunately, JBuilder provides very basic support for this so
developer is forced to create the entire JavaDoc comments markup manually.

To significantly increase productivity of source code documentation creation, to reduce
amount of possible JavaDoc errors those can occur during this process and to insure
that documentation is still valid after performed refactoring, Productivity! offers very
powerful tool intended to provide visual JavaDoc editing.

The Smart.JavaDoc tool offers rich JavaDoc creation, navigation and editing
functionality. It represents additional viewer for Java files and is accessible via
appropriate tab at the bottom of the editor.

EWelcome.jpx g - @~ px v@v@' B I O *- @QE' EE'

& ‘welcome, html
=
& welcomespp.java ConE v ?P_Rl‘ A - A o @

& WelcomeFrame java

- & -

Ik |y
m

public woid setSize (Dimension d)

Setthe size ofthis Dimension objectto the specified size. This method is included for
completeness, to parallel the set3ize method deﬁrl%j hy Component.
Parameters:

d- the new size for this Dinension ohject.

Since:
DE oE (Ee , @7 JDK1.1
to e | He T @A YIRS @
See Also:
@ @ Dimensian -) _ _ _
D DimensionzD ava. awt Dimension#etSize

B9 Serializable

< Dimension()

& Dimension{Dimension d)

< Dimension(int width, int heigh
A equals{Object obj)
“ getHeight)

Ad getSizel)

@ getwidth()

* hashCods()

“ setSizefDimension d)
A s setSizefdouble width, double K

setSizelint width, int height) || e e [setSize(Dimension d) [

A toString(y
| [.|_ LSource LDesign LBean LDoc LHistory L%‘)\ Smart.JavaDoc|

java.awt. Component#setSize

&Source HTML |
public woid set3ize (Dimension d) {
setiize (d.width, d.height):

1

Figure 36 Smart.JavaDoc Overview
The major features of Smart.JavaDoc are:

¢ Close to WYSIWYG mode of JavaDoc comment editor (according to HTML output
provided by standard JavaDoc doclet);

¢ Rich HTML editing capabilities (Smart.JavaDoc does not support whole set of
HTML tags. However, the supported set is quite enough for creation of
professional quality documentation);

e Ability to discover and visually highlight JavaDoc conflicts and errors (such as
unsupported tags, parameters and throws conflicts, missing tags etc);

e Ability to easily correct found JavaDoc conflicts and errors;

Productivity! User Manual 50

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools
Rich functionality of JavaDoc comment structure management (adding specific
tags, adding all required tags, removing all invalid and unused tags, tags
renaming may be performed in couple of clicks);

Convenient functionality for navigation and instant accessing members for
which JavaDoc comments should be created;

Ability to filter members used for documentation creation via advanced Java
Structure Component;

Ability to perform two-way editing of JavaDoc comment — using both
Smart.JavaDoc and usual Java source editor;

Ability to browse source code while editing JavaDoc;
Ability to instantly get preview of JavaDoc comment will be generated;

Sophisticated multilevel undo/redo support;

Smart.JavaDoc User Interface

The Smart.JavaDoc tool is an additional viewer available for Java files.

It consists of two major parts:

Java Structure View, which allows you easily navigate between members for
which JavaDoc comment should be generated;

JavaDoc View, intended to provide JavaDoc comment editing and previewing;

=
oE of | @3 . @7 1
e e |mbe T = T|Eg| ¢ &

% setCelEditor TableCalEdtar anEditar) = |
% zetCell=electionEnablediboolean celld
% setColumnbodel TableCalumniodel o
% setColumnSelectionlowed(boolean
® setColumnSelecigninteryal(in index0, irt inde:x1) |
% setDefaurtEditD:%ass columnClass, ||

% zetDefaultRenderer(Class columnClas s P |E=E:EZE
% setEdtingColumniint aCalumm)

% setEditingRowiint aRow)

| |JTakle
|*|l Sourg

&
public method

Figure 37 Smart.JavaDoc Java Structure View

The Java Structure View offered by Smart.JavaDoc is similar to one provided for Java
files. The main difference is that all unimportant and not suitable members are filtered
out from its view. There are two additional actions, those allows to navigate to the
next/previous member of Java Structure View. These actions may be invoked using
Ctrl+Page Down and Ctrl+Page Up shortcuts, respectively. Please note that these
shortcuts are operational even if Java Structure View is not visible.

Productivity! User Manual

51

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

The JavaDoc View contains toolbar with set of actions used for JavaDoc editing, the
JavaDoc editor and, optionally, the preview panel.

@r~-q ITp‘t Sans B I 0 x*-@’l%,
T l:l:-i’ unfﬁ} Evlav@ T

public void setDefaultRenderer (Clazs columnhlClazsz,
TableCellRenderer renderer)

&
|
4
|1 |
I||'||
gz
il

l:l 5 |_ hu:uw it can be pozsible that nu:ude iz not wis

Sets 3 default cell rendererto he used if no renderer has bheen
setin a TableColumn. Ifrendereris null, reroves the default
renderer for this EP\Iumn class.

by
® |ist item1 -

rﬁ SOUrce r@ HTRIL |
public woid setDefaultRenderer(Class columnClass, ||
if (renderer '= null) { L

defaultRendererSBYchumnClass.puticulumncii
}
else |
defaul tRenderersEyColunnlClaszs. remove [colu

[4]

« [[+

Figure 38 Smart.JavaDoc View with Source Code View

There is ability to showing/hiding of the preview panel using the E button on the
Smart.JavaDoc toolbar.

The preview panel consists of two tabs. The Source one allows you quickly view source
code for the currently edited member as well as for the whole file.

The HTML tab contains live preview of the JavaDoc comment that will be generated for
current member.

Productivity! User Manual 52
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Br - ’_m@vﬂfuxzv@"gv
prl
Ilunnj;l iv&T@{}{}

public void setDefaultBRenderer(Class columnClass, :
TableCellRenderer renderer)

L]

4
L1
III'II
In|
|||||

2 | B [howe it can be pnssmle that nu:ude iz not vist
é m | gl 5

Sets a default cell renderarto e used if no renderer has heen
setin a TableColumn. If renderl%is null, removes the default
renderer for this calumn class.

l

® |ist itemn1

rﬁ, Source r@ HTML |
J,-'ﬂ'?r il
®oCp i
* imyy src="file: F:fzal.gif” align="middl;
oL fpeips
* Sets a <wedefaultsfu= cell <ikrenderer<f
* color="#0000L££"=renderer has bee<ffont>n
* ZooderTableColumnfoode-. If renderer is:
4 [E] I

Figure 39 Smart.JavaDoc View with JavaDoc Comment Preview

The JavaDoc editor panel includes set of editors (one editor per one JavaDoc tag). Each
editor or editors’ group is labeled with the name of the tag it belongs to. To navigate to
the next/previous tag editor, the Tab (or Ctrl+Down)/Shift+Tab (or Ctrl+Up)
shortcuts are provided respectively.

JavaDoc Editing Using Smart.JavaDoc

The Smart.JavaDoc tool offers rich functionality for WYSIWYG editing of the JavaDoc
comment in form close to one will be generated by standard JavaDoc doclet and, in
turn, rendered by Help Viewer.

Editing of JavaDoc is started by activation of Smart.JavaDoc using appropriate tab at
the bottom of the editor. Smart.JavaDoc first tries to discover member in the current
caret position and offers editing of JavaDoc comment for it. If there are no JavaDoc
comment exists for the current source code member, the default JavaDoc template for
all suitable tags is offered. If JavaDoc comment exists, Smart.JavaDoc will show editors
only for tags defined in it.

Changes made by user while editing the JavaDoc comment are written to the source file
on closing the Smart.JavaDoc tab, on selection of another member (class, field or
method) or by saving the document.

Productivity! User Manual 53

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Please note that Smart.JavaDoc may perform conversion of some unsupported tags
found in JavaDoc comment.

The following are limitations of Smart.JavaDoc regarding support of HTML tags:

1. Smart.JavaDoc doesn’t support the following HTML tags so it skips and ignores
them

<base>, <basefont>, <body>, <html>, <title>, <meta>, <script>, <style>,
<head>, <applet>, <object>, <frame>, <noframes=>

2. The following tags are partially supported by Smart.JavaDoc — they will be displayed
but in some cases they may be edited incorrectly:

<form>, <input>, <option>, <textarea>, <table>, <td>, <tr>, <th>

3. There is set of tags those will be replaced by equivalent ones:

Original tag Replacing Tag

=> <i>

<address> <i>
<cite> <i>

<small>

<big>
<div> <p>
<dt> <p=>
<blockquote> <p>

<tt> <code=>

4. Smart.JavaDoc does not support nesting of container tags like <p>, <pre>, ,
, <div>, <dt>, <table>. If JavaDoc comment to be edited contains such
nested structures, they will be translated to linear ones, if possible;

5. If the color attributes are not set for the following tags, Smart.JavaDoc artificially
adds them to allow visual recognition of the tags content. These artificial colors are
temporary ones and will not appear in the resulting JavaDoc.

Productivity! User Manual 54

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Tag Color Assigned
<pre=> Green
<var=> Maroon

<anchor=> Blue
<code> Navy

6. Smart.JavaDoc doesn’t support paragraph align attributes for the following tags:

<pre>, , , <table>

Also, please note that Smart.JavaDoc considers all words starting from @ as JavaDoc

tags.

Smart.JavaDoc Toolbar

Most of the actions accessible for JavaDoc editing are provided by Smart.JavaDoc

toolbar.

i
d—
-

L]y
I||'II

=
il

e E

B|I|U| - af
T EDi”Uﬂf”ﬁ}' A & I@

&

Figure 40 Smart.JavaDoc Toolbar

The following groups of actions can be found in the Smart.JavaDoc toolbar:

Ll Tags —actions group provides ability to manipulate the JavaDoc structure by
adding, editing or removing particular JavaDoc tags.

@.;Fr\@ﬁ EX'IE'IE' B I U

Allygifailahles

icitodo (Tolw)

@zince [=ince]

@Wsee (See Alzo)

zerialData (zerial data)

wdeprecated (Deprecated)

rnderer (Clasg

be usedif nor
ar this column

ault cell render,

Figure 41 Adding Required Tags

= Font - actions group provides ability to apply appropriate font size and
family to the currently selected block of text;

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

55

Productivity! — Power Tools

= Font Style —actions group provides ability to apply appropriate font style
(bold, italic, underline and subscript/superscript ones) to the currently selected
block of text;

*: Subscript

lass x% Superscript LeCd

nrendeter has heen setina T4

Figure 42 Applying Subscript Style

= Format Painter — a tool is similar to one can be found in Microsoft Word.
Allows performing of quick copying of formatting style from one text fragment to
another one;

Ll Paragraph Alignment —actions group provides ability to set alignment of
paragraph;
= Bullets and Numbering —actions group provides ability to convert currently

selected code fragment to a list (either numbered or unnumbered);

s— Marked List
T 3= dumbedlist pdes
et in g TableColunn, [frender

Figure 43 List Style Selection

= Indents —actions group that provides ability to increase or decrease the
indent level of the current paragraph;

. ET_W_;Y-F_ﬁT

CODE AR PREX

L]

I

4
|1 |
gLl

Increase

Iy
i

phlelCe Decreaze er)

atl
my

Lir & TableColumn. If renderer is mall

Figure 44 Controlling Indent Level

= Insert Objects —actions group that provides ability to insert various HTML
objects.
Productivity! User Manual 56

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

- @@,_ﬁ"_ﬁ’ﬁ'ﬂ,

CODE WAR <PREX

@Link

hd % Hyperlink

— Hatizontal Line

: Lire Break
Imane

Border

@ Inzert ymbol

Figure 45 Inserting Special Objects
The following objects are supported:

a. Link - corresponds to the JavaDoc @link tag. The user is able to specify
properties of a new link or change them for existing one by using Link
Properties Dialog

@ Link Properties
Link Texdt:

Link Location: I%

| |[]

URL iz relative to page location

Ok Cancel Help

Figure 46 Link Properties Dialog
b. Hyperlink — corresponds to HTML tag;
c. Horizontal line — corresponds to HTML <hr> tag;
d. Line Break - corresponds to HTML
 tag;
e. Border — applies appropriate HTML style to the current paragraph;
f. Image — corresponds to HTML tag. The user is able to specify

properties of a newly created image or change them for existing one
using the Image Properties Dialog

Productivity! User Manual 57
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

@ Inzert a New Image
rLDcatiDn rDimensiDns r.&ppearance | rPrevie
Align Texd to lmage: ||middle
pacing
: Cal B[] [hevee it can be g
Left and Right: |III o
: J B | [¢] [Refeach cuprant
Top and Bottom: |III L\} B | [] [Check clazses
Border: n -
Ok Cancel Helgp

Figure 47 Image Properties Dialog

g. Insert Symbol — allows to insert special symbol to JavaDoc comment
using the Insert Special Symbol dialog

@ Inzert Special Character
Select Character:
" k3 = =
i i £ = ¥
' g) @ :
& - - =] -
a t z I
H)l . !
° kS % Y2
i IBI}s 3 +
[0],4 Cancel Help

Figure 48 Insert Special Character Dialog

Ll Colors —actions group which provides ability to specify foreground and
background color for the selected fragment of code;

= Options — provides ability to enable/disable displaying of the preview panel;

= Navigation - includes two actions those allow navigation to the
next/previous member of Java file. These actions may be invoked using
Ctrl+Page Down and Ctrl+Page Up shortcuts, respectively.

= Block Style —actions group which provides ability to specify style of the text
block — paragraph (<p>), preformatted block (<pre>=), code (<code>) or
variable width (<var>);

Productivity! User Manual 58

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

%v _ & =y

conE war cpney|

Prefurmat

+ Paradrpah
Erer T

Header 1
Header 2
Headler 3
Header 4
Header 3
Header &

namr. f 1

Figure 49 Text Block Style Selection

There is ability to specify which actions group should be visible on the Smart.JavaDoc
toolbar using the toolbar context menu.

saner B O O xzv@’%vEE*
o

|7 Tags
ultReng l: Fart TableCe
rerto be |7 Fort Style setina Ty
ferer for |7 Farmat Pairter

|7 Paragraph Alignment
& defau |7 Bullets and Mumbering lass
Irender| [+ Indents 253

[v Inzert Objects

[v Block Style

F Colors [%

|7 Ciptions

|7 Mavigation
default cd if no
A <cods Hide A1l rendere

Figure 50 Controlling Smart.JavaDoc Toolbar

JavaDoc Errors Highlighting

The Smart.JavaDoc tool provides rich functionality that allows detecting whether errors

or conflicts between Java code definition and corresponding JavaDoc exist.

If some error or conflict is detected, Smart.JavaDoc highlights appropriate element
using the underline with style and color corresponding to the issue priority. The reason

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

59

Productivity! — Power Tools

of the highlighted issue can be found in the hint that appears when mouse cursor is

placed over the highlighted element.

public woid columnBemowed | TableColunnMode lEvent e)

| 1 (]

[rvoked when a column is removed fram th
Application code will not use these metho

Miz=ing definition of parameter "e".

[y by

JTahle.
See Also:

TableColumnMaodellistenar

T ¥

Figure 51 JavaDoc Comments Errors Detection

The style of the issue highlight is defined by settings can be found on the Editor Options

| Productivity! | Smart.JavaDoc property page.

You can easily fix found errors utilizing appropriate commands available from the popup
menu or from toolbar. Using them you can add, remove or edit required JavaDoc tags.

Smart.JavaDoc Shortcuts

There are a lot of actions provided by Smart.JavaDoc those are accessible using

keyboard shortcuts.
corresponding shortcuts.

The following table summarizes these actions along with

Table 5 Smart.JavaDoc Key Bindings

Action Shortcut
Copy to clipboard Ctri+C

Cut to clipboard Ctrl+X

Paste from clipboard Ctrl+V

Select all Ctrl+A

Insert new paragraph / Insert new line in | Enter

the PRE block

Word left Ctrl+Left

Word right Ctrl+Right
Select word left Ctrl+Shift+left
Select word right Ctrl+Shift+Right
Go to start of line Home

Go to start of document Ctrl+Home

Productivity! User Manual

60

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Power Tools

Go to end of line End
Go to end of document Ctrl+End
Select to line start Shift+Home

Select to document start

Shift+Ctrl+Home

Select to line end

Shift+End

Select to document end

Shift+Ctrl+End

Go to line above Up

Go to line below Down
Select to line above Shift+Up
Select to line below Shift+Down
Increase paragraph indent Ctrl+Tab

Decrease paragraph indent

Ctrl+Shift+Tab

Go to the next tag

Tab or Ctrl+Down

Go to the previous tag

Shift+Tab or Ctrl+Up

Go to the next member

Ctrl+Page Up

Go to the next member

Ctrl+Page Down

On link or image — activate property

action

Otherwise — select paragraph

Mouse-double-click

Set selected text BOLD/DEFAULT Ctrl+B
Set selected text ITALIC/DEFAULT Ctri+1
Set selected text UNDERLINE/DEFAULT Ctrl+U
Insert Horizontal ruler (<hr>) Ctrl+L
Insert line break (
) Ctrl+Enter

Format painter

Mouse click — to copy format,
mouse click to paste format, Esc or
click on button to clear

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

61

Productivity! — Editor Enhancements

Editor Enhancements

The overall productivity of developer greatly depends on source code editor. That’s why
Productivity! includes several tools those enhances built-in JBuilder editor and allows to
gain Productivity! users even higher level of productivity.

These tools may be separated on several categories:

e Code editing improvements - Smart.Clipboard, Auto.Indent, Smart.Selection,
Smart.Braces tools;

e Matching elements highlights - Smart.Braces.Highlight,
Matching.Code.Highlight tools;

e Usability improvements - Thumbnail Gutter, Smart.Gutter, Advanced Text View
Status Bar, Line Numbers tools;

e Editor look and feel improvements - Methods and Classes Separator, Changes
Highlight, Classes Highlight tools;

Smart.Clipboard - Pro!

This tool introduces the replacement for standard clipboard actions and offers a number
of improvements and new features.

Paste Action

In general, this action acts as usual Paste action but, in addition, also allows making the
following actions:

e Auto indentation of Java code during paste operation according to the indent
level at the point of pasting;

e Automatically insertion of appropriate import statements on paste for classes
used in the copied fragment (if clipboard content was copies from JBuilder editor
with Java code).

Copy/Cut Actions

In general, those actions acts as usual Copy/Cut actions but they allows making the
following additional actions:

e Collecting information about classes used in the copied/cut code fragment.

e Storing the copied/cut code fragment in the local clipboard queue that allows
future use of several code fragments.

Swap Action

This action allows swapping the content of the clipboard with currently selected block of
code. It can be invoked using the Ctrl+Shift+Insert (CUA) shortcut.

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 62

Productivity! — Editor Enhancements

Pop Paste Action

This action allows consecutive popping and pasting of code fragments from the local
clipboard history in the LIFO order. It can be invoked using the Ctrl+Alt+Insert (CUA)
shortcut.

Clipboard.Insight

This tool allows viewing of local clipboard queue and pasting one or several selected
fragments in the editor. When editing a file, press Alt+Shift+V (CUA) to invoke
Clipboard.Insight. The Clipboard.Insight popup will be shown with the list of code
fragments copied/cut to clipboard during the JBuilder session.

static public void main(%tring[] args) { H
% Clipbaard. insight super.processiindovEvent (e ;
B super.processWindonEvent(e) : J|if (e.getID() == WindowEvent.WINDOW_CLOSING) |
] super.processWindowEvent (e} ; Aystem.exic(d);
ﬁ protected woid processlindowEwent (W. .. '

ﬁ static public woid maini(3tring[] args)
ﬁ Dimension screeniize = Toolkit.getD...
ﬁ Dimension screenlize = Toolkit.get...

ﬁ S¥sten. out.printlng™™) :
¥

|0 ||»|1 |§:§:

Figure 52 Smart.Clipboard.Insight Window Along with Clipboard Content Popup

You can select a code fragment navigating through the list with the help of the usual
keyboard.

Clipboard.Insight list supports multiselection feature, thus it’s possible to paste several
items at once. To do this, select the code fragments should be pasted using the Ctrl
key and mouse and then press the Enter key - Clipboard.Insight will insert all selected
items.

It’s possible to control the order of inserted items. Holding Chift while pressing Enter
will lead to inserting selected items in reverse order.

Options Dependency

You can control the behavior of Smart.Clipboard using the Editor Options | Productivity!
| Tools property page.

Smart.Selection - Pro!

The Smart.Selection tool represents set of several selection enhancement actions
those allow to simplify selection operations while editing Java files. The following
actions are provided:

e Selection of the whole code block, statement, method or class. These actions
are available in the editor context popup menu as well as in the JBuilder menu
bar. There are no default key bindings for these actions but you are able to easy
assign them using the Key Map editor.

Productivity! User Manual 63

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Editor Enhancements

e Expanding Selection Ctrl+W (CUA) and Narrowing Selection Ctrl+Shift+W
(CUA). These actions are also available in editor context popup menu and in the
JBuilder menu bar as well. They allow to expand/narrow current selection
incrementally to outer/inner source element respectively. The approximate
order of selections is as follows (the exact one depends on current structure of
the Java code and current caret position):

0

(0]

Smart.Gutter - Pro!

Word under cursor;

Expression;

Statement;

Code block

Enclosing statements and code blocks;

Method;

Class;

Whole file.

The Smart.Gutter is a gutter placed at the left side of the editor (and right from JBuilder
editor gutter) and it is intended to show miscellaneous hints concerning corresponding
Java code by arranging appropriate gutter marks. The Smart.Gutter allows viewing tool
tips those show description of a Smart.Gutter mark when mouse cursor is moving over
it. Optionally, any Smart.Gutter mark can provide operations applicable to the

corresponding code. If there is at least one operation available, the * sign is shown at
the left of a gutter mark. In this case, mouse cursor is changed to the hand one and the
operations can be executed by mouse button click. The most typical operation is
navigation to some piece of code related someway to the code corresponding to the

mark.

The Smart.Gutter marks are currently supported for the following cases:

a

@t protected void processiindonErant | Wnd
sper.processWindovEventi(e) ;
i Object conponent:
if (e getID() == [WndonFrept WINDOW |
Yariable ‘component hides field defined in the class

+ returi;
i
}

Figure 53 Smart.Gutter

3 - There is method overriding;

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

64

Productivity! — Editor Enhancements

e © - There is declaration of constructor with the same signature as the one

defined in the super class.

. % _ There is a break statement.

-
i

. =~ - There is a continue statement.

- There is a return statement.

[)
-

L]

. - There is a throw statement.

M % % [orml= 4]]
elcomeFrame java My [@ wielcomeF
Showy Smatt Gutter Marks F!

Source | Design | Be

Figure 54 Smart.Gutter Marks Show/Hide Button

There is ability to turn Smart.Gutter marks on/off using the =t button in the View Toolbar.

Thumbnail Gutter - Pro!

The Thumbnail Gutter is an additional gutter at the right side of the view. It’'s intended
to quickly provide information about state of the currently edited Java source file. Unlike
to the built-in JBuilder gutter, Thumbnail Gutter always shows gutter marks for the
whole source file. Supported gutter marks are errors, warnings and To Dos.

-8

EIENEIEN

Figure 55 Thumbnail Gutter

In addition, the gutter allows quick navigation to a corresponding code issue by single
mouse button click.

Productivity! User Manual 65

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Editor Enhancements

i

Reference 1o a class List iz ambiguous.

Figure 56 Thumbnail Gutter with Hint for Error

This gutter shows distribution of code issues along the whole file. Also, it allows quickly
get information about particular mark using hint that appears if mouse cursor is placed
over appropriate gutter mark.

There are several additional features provided by Thumbnail Gutter:

e Ability to navigate to any position within file using mouse button double-click in
the desired location on the gutter;

e Status icon at the top of the gutter, which shows the status of the file. There are
following statuses:

o @ OK - no errors or warnings found;
o] 0 Errors — any errors found;
o O Warnings - any warnings found;

o] @ Running — Code is being analyzed.

¢ Assistant icon at the bottom of the gutter, which providers access to Assistants
menu that allows controlling of Code Assistant and Info Assistant status;

e Ability to display bounds of the class which caret position belongs to. This
feature allows instantly understand whether errors and warnings exist those are
related to that class.

Classes Highlight - Pro!

Classes Highlight is a tool intended to highlight classes used in the code. It uses "Extra
keyword" style so to see it in action please customize this style (to make it different
from "ldentifier" style) using the Editor Preferences | Editor | Color | Java property
page.

Productivity! User Manual 66
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Editor Enhancements

Public clazzs Welcomedpp |
boolean packFrame = falze;

¥ Construct the application

ot public Welcomedppi) |
WelcomeFrame frame = new WelcomeFramel():
J/Pack frames that have uzeful preferred =i

Figure 57 Classes Highlight

By default all (*) classes are highlighted but it's possible to specify which classes should
be highlighted (e.g. java.*;javax.*;) for each project using the Project Properties |
Productivity | Tools property page.

Advanced Text View Status - Pro!

Productivity! includes enhanced editor status bar intended to provide more information
about the current status of file in the editor as well as to simplify navigation operations.

B

47
45
49
a0
51

|7 Show current class d woid addComponentlistener (ConponentListener 1)

tLi 1):
Fshowcurrentmethod nen 1s|tener{ !

|7 Show lines counk
|7 Show cursor location Bl ! |

£ v |4
|7 Show cursor position | | |

W]

el - ~r—telcomeFrame % vo[‘gaddComponentListener(... [4@z [192z [105 [Modified | Insert
- - &
SER LDeggn LBeiLDD—CLH'StDW Lﬁ/ Shit i Jaislliae | |public void addComponentListener{ComponentListener) (double click to navigate) |

Figure 58 Advanced Text View Status Bar

The Advanced Text View Status provides all functionality of built-in JBuilder status bar
and offers the following additional features:

Displaying name of class corresponds to caret position (Java files only);
Name of method corresponds to caret position (Java files only);

Caret position (offset of caret location within editor document);
Number of lines in editor document;

Ability to instantly change read-only status (if file is not modified and is stored
in file system) using mouse double click on file status label;

Ability to change insert/override status using mouse double click on insert
status label;

Ability to invoke JBuilder “Go to line number” dialog using mouse double click on
caret position or caret location label;

Ability to invoke Browse.Insight popup using mouse double click on the class
name label (if one is visible);

Productivity! User Manual 67

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Smart.Braces

Productivity! — Editor Enhancements

e Ability to invoke Browse.Members popup using mouse double click on the
method name label (if one is visible);

e Ability to customize set of labels should be visible within Advanced Text View
Status using popup menu which can be invoked using right mouse click on any
status label;

NOTE:

Matching.Cod

Smart.Braces is a tool that allows easy creation of matching braces right while you are
typing. Just type an opening brace and Smart.Braces will automatically add the closing
one. In addition to braces completion, Smart.Braces supports completion of string and
character enclosing symbols - " and ' , respectively.

Smart.Braces adds closing characters after the opening ones for all characters except
curly braces; the closing curly brace is inserted into the next line and may require an
additional line, for the cursor with the appropriate indent to be placed (according to the
Complete curly brace and indent option).

Options Dependency

You can control the behavior of Smart.Braces using the Editor Options | Editor | Editor
Options tree view - expand the Smart.Braces options node and turn on or off options
you need.

With a non-standard JBuilder keymap used (such as Vi/VIM), Smart.Braces may conflict
with keymap settings. Apparently, for the VI keymap, ' and " symbols may be
overridden by Smart.Braces. The reason of such behavior lies in the features of the vi
implementation (not absolutely correct implementation of the Keymap default action).
However, you can disable the part of the Smart.Braces functionality, which leads to the
conflict. To do this, please add the following lines to your JBuilder.config file (located in
the JBuilder/bin directory):

vmparam —DProductivity.Smart.Braces.CompleteCharacters=no

vmparam —DProductivity.Smart.Braces.CompleteStrings=no

e.Highlight - Pro!

Productivity! User Manual

Copyright © 20

Java is well-structured language, but several statements exists that greatly decrease
readability of the program — those ones, which breaks normal code flow execution.

In some cases, especially if source code is written by another developer, it can be hard
to understand to which statement, for example, break one points too. The situation
become even worse if these break statement has label and labeled statement is far from
break one. The Matching.Code.Highlight become really invaluable in such situations.

Matching.Code.Highlight tool provides help in source code investigation and helps to
understand which code is matching to one at the caret position. In addition, this tool
provides easy navigation to it.

68
00-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Editor Enhancements

[| + for (int i = 0; i < anlnnerClaszsses.length &«& result == null; i-|—|-]|
1479 JotClass current = anlnnerClasses[i]:
1480
1451 if (current.getlame().equals{allazsNane])
1482 i
1453 result = current;
laga = break:
1435 1
1958

Figure 59 Matching.Code.Highlight

It introduces the following features:
e Ability to highlight the break target statements for return, break, labeled break
(break <label=), continue, and Ilabeled continue (continue <label>
statements);

e Ability to highlight matching code using dotted path with arrow on the Gutter;

e Ability to view matching brace code when it’s has been scrolled out of view. The
special popup window shows the matching code in the top of the editor;

e Ability to navigate to matching code using Ctrl+Shift+\ (CUA) shortcut.

Options Dependency

You can control the behavior of Matching.Code.Highlight using the Editor Options |
Productivity! | Tools property page. Using this page you are able to specify whether the
code popup window should be displayed as well as to set the popup window invocation
delay.

Smart.Braces.Highlight - Pro!

The Smart.Braces.Highlight tool offers matching braces highlight and navigation
operations.

h L —a [Se [e T N T/ a0y & | Ho L 4 o
for (int i = 0; i < anInnerClasses.length && result == null; i++)

result = current;
bhreak;

if [(aClazsName.startalith(current.getManei))]
result = ohtainClassi(Jotlltils. obtainInnerClasses((JotlClassSoure

Productivity! User Manual 69

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Editor Enhancements

Figure 60 Smart.Braces.Highlight with hint window

The major features of Smart.Braces.Highlight are:

e Ability to find and highlight matching brace when the caret is placed at any side
of a brace;

e Ability to navigate to the matching brace using only one shortcut
Ctrl+Backslash (CUA) for opening and closing ones;

¢ Ability to view matching brace code when it’s has been scrolled out of view. The
special popup window shows the open brace code in the top and close brace
code in the bottom of the editor correspondingly. Please note that the close
brace code can be shown for try/catch/final and do/while statements only;

e Ability to show matching braces scope on the Gutter.

Options Dependency

The Smart.Braces.Highlight behavior can be controlled using the Editor Options |
Productivity! | Tools property page.

Changes.Highlight - Pro!

The Changes.Highlight tool highlights changed lines of code using the special marks in
the gutter. The main features are:

e Change marks can track amount of changes in the particular line of code and
reflect the number of them using different colors. Thus, more times line was
edited, more bright color will be used to highlight changes;

e Full support of undo/redo functionality as well as re-reading of document;

e Full support of MVC architecture that allow tracking and showing changes in the
document across different views and browsers.

{
resultl = CUurrent;
hreak;

if [(aClazsName. startsWith{current. getMana () 1)
result = obtainClass(JotUtils. cbtainInnerClasses

4

Figure 61 Changes.Highlight and Current Line Highlight

Current Line Highlight - Pro!

The Current Line Highlight increases usability of the JBuilder editor. As it follows from it
name, this tool simply highlights the line of code at the caret position using specified
background color.

Productivity! User Manual 70
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Editor Enhancements

outerClazsNane aClazsane. 2
H 1 4 o123 2 1_|_§:

Interfau:elmplementatiu:unutils.E&a_l_qcn.aua‘:amdemam.aE
Showy Current Line Highlight
]\Suurce Des=ign |Eean C LhiC

I~ I |

Figure 62 Current line highlighting switch

Line highlighting can be turned on/off using the = button from the View Toolbar (one

that is placed at the left bottom of the editor near horizontal scrollbar left corner).

Classes and Methods Separator - Pro!

This is another tool included into Productivity! intended to increase readability of the
Java source code. It visually separates classes and methods from each other by
painting horizontal line at the top of corresponding classes and methods declarations.

Please note that this feature depends on the errors in Java source file. If there are some
severe syntax errors the Java source code parser is unable to parse code correctly. In

such a case some of the dividers may be displayed incorrectly.

jHEﬂuFilEExit.setfhxt(”Exit"J;
JMenuFileExit.addictionlistener (new Actionlistener()
public void actionPerformed(ActionEvent) {
JMenuFileExit_actionFerformed(e) ;
}
1
jHernuHelpibhout. setText("About™] »
jMernaHelpibout. addictionlistener (new Actionlistener()
public woid actionPerformed (ActionEwvent e)] |
JMeruHelpdhout_actionPerformedie);
class LocalClass

1
public void a() {}

'
1
jMenuBarl. add | jMenuHelp) ;
'

SrOverridden so we can exit when winkdow iz closed
protected void processindowEvent (WindowEvent e] {
if (e.getIDi) == WindowEvent.WINDOW CLO3ING) {

Iystem. exit(0);

b

A¢File | Exit action performed

Avatem. eit it

{

{

public woid jMeruFileExit _actionPerformed{ictionEwent e)

Figure 63 Visual separation of Methods and Classes

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

71

Productivity! — IDE Improvements

IDE Improvements

Productivity! offers rich set of powerful JBuilder IDE improvements, intended to
increase JBuilder usability.

These tools covers very common tasks and allows significantly minimize time required
for their completion.

These tools help in solving of the following tasks:

e Synchronization of currently opened file with appropriate node in the
JBuilder Project View — Project View Synchronizer;

e Getting more detailed information about Java file structure as well as
filtering of Java Structure content — Advanced Java Structure;

e Synchronization of the current caret position in the editor with Java code
with appropriate structure element — Java Structure Synchronizer;

¢ Quick obtaining information about read-only status of file and changing it —
Change.ReadOnly;

Project View Synchronizer - Pro!

The Project View Synchronizer provides ability to synchronize file is currently being
editing with the corresponding node in the JBuilder Project View. There is possibility to
have continuous synchronization that automatically tracks the changing of the current
file and finds corresponding node in the Project View.

else
Wi %leorml= 40]

Interfau:elmplemf-ﬂgatiunmils.ja'-.fa | & Irterfacelmpler
LSDLIFCE Diesig Synchronize source with project E

Figure 64 Force Project View Synchronizer Button

L= R o
411 %llf? ErEiE [

facelmplemerﬂlﬁ@nmilsjava | & Interfacelmplementationl

hree | Design |Always synchronize source with project —[

Figure 65 Project View Synchronizer Buttons

If continuous synchronization is disabled, there is an ability to force synchronization
manually. Project View Synchronizer behavior can be controlled using ™ and !l View
Toolbar buttons placed at the left bottom of the editor (near horizontal scrollbar left
corner).

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 72

Productivity! — IDE improvements

Options Dependency

The Project View Synchronizer behavior can be controlled using the IDE Options |
Productivity! property page which may be used to specify if all nodes except the current
one should be collapsed after Project View Synchronizer invocation.

Structure View Synchronizer - Pro!

This tool allows synchronizing of Java structure element at the caret position in the
editor with the corresponding element in the Java Structure View. There is possibility to
have continuous synchronization that automatically tracks caret position changes and
finds corresponding element in the Structure View. If continuous synchronization is
disabled, there is an ability to force synchronization manually.

*
"m 44 [ormal= 40

Graupshi Java |
-LScuurce Synchronize source with structure \erm-d jowanl

Figure 66 Java Structure Synchronizer Buttons

i
MEAAETEKIE T
|GrDupsDiaID§ﬂ,§va [
-|\S|:|ur|:e LF Alvways synchronize source with structure |‘

L

Figure 67 Java Structure Synchronizer Buttons

Structure View Synchronizer behavior can be controlled using the M and 1 View
Toolbar buttons placed at the left bottom of the editor (near horizontal scrollbar left
corner).

Change.ReadOnly- Pro!

This tool allows easy viewing and managing read-only status for file nodes. The main
features are:

e Ability to change read-only status (if file is stored in file system) for one or any
files using popup menu on viewer tab, file node in the Project View or by mouse
double click on appropriate panel in status bar (the last approach is applicable to
Java files only);

e Ability to highlight read-only status using red dot in the top-right corner of the
node icon (for Java files);

e Ability to highlight modified status using blue dot in the top-right corner of the
node icon (for Java files);

e Ability to track outer changes of read-only status as well as file modifications .

Productivity! User Manual 73

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — IDE Improvements

2 & & WiElcome joi - @

Wielcome: jpx

ﬁ Wiglcome html

ﬁ Welcomebpp java
ﬁ WielcomeFrame java

QOpen

(2 Add Files / Packages. ..

E Femove from Project "WelcomeFrame java"
Rename "WelcomeFrame java"...

| Mewy Folder ..

% Close Project "Welcome jpx"

3 I
o v Reqd Only
B Wl e
il
t rl—:fa hake:
. 5 S Rebuid
G
% i % Productivity! Cache Eefresh....]
% i Properties...

% processListiList aletloferste] T T

Figure 68 Java Structure Synchronizer Buttons

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 74

Productivity! — Navigation Tools

Navigation Tools

Productivity! offers rich set of powerful tools intended to simplify navigation and allow
quick finding of required information.

There are several types of navigation are supported:
¢ Navigation to appropriate class using short class name- Browse.Insight;
¢ Quick navigation to appropriate member of Java Class — Browse.Members;
¢ Navigation to particular symbol definition — Hyperlink.Navigate;
¢ Navigation to appropriate bookmark in editor — Persistent.Bookmarks;

¢ Navigation and iteration to source code element (class, method, fields) code
issue, to-do comment of search result — View Navigator and Navigator;

Browse.Insight

Browse.Insight allows quick finding Java classes with short names corresponding to the
word at the cursor position, browsing them or opening the appropriate help topic for

them.
C=CCOCIeTT
Ly Javax. swing. J FabbedFane |
ption |Browse Class: lJTa | + X E
@ JTahhedPane)] i
JTabbedPaneBeanInfo @ javax. swing
- 4 JTahle @ Jawvax. swing
FEx1T | # JTableEBeanInfo @ javax. swing
2 JTahleHeader EEI javax. swing. table

Figure 69 Browse.Insight Popup Window

To invoke Browse.Insight press Ctrl+Minus (CUA). The Browse.Insight popup will be
shown with the list of classes matching the word at the cursor position. The list may be
empty if there are no matching classes though. To find matches, type a word in the
Browse Class edit box and Browse.Insight will dynamically rearrange the classes’ list to
show the matching ones.

You can select a class navigating through the list with the help of the usual keyboard. An
Alternative to do it is to continue typing the word; the list selection will be changed to
produce the closest match possible.

Browse.Insight Actions

Press Enter when you find the required class and Browse.Insight will open this class in
the browser.

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 75

Productivity! — Navigation Tools

Press Ctrl + Enter when you find the required class and Browse.Insight will open the
appropriate help topic for it.

Also, there is a possibility of employing the Browse Classes dialog, which shows
packages structure and allows choosing a class by specifying its full path. You can use
the appropriate button in the top left corner of the popup to invoke it.

Options Dependency

Please note that the set of classes shown in Browse.Insight depends on Packages
Exclusion settings on the Project Properties | Productivity! | General property page.

You can adjust the way of classes sorting as well as the algorithm used for classes
search using the Editor Options | Productivity! | General property page. There, using
the Productivity! Insights Usage option, you can specify whether Productivity!
Browse.Insight tool or JBuilder built-in Browse classes should be invoked.

Browse.Members

Browse.Members allows quick finding members belonging to the current discovered
context and browsing them.

CATCH [EACENCITT BT 1
Browse to hMember: | | v |« &2

2 el comeipn (]

“mainiStri L1 rros el
-f' packFrame public ztatic woid main(3tring[] ardgs) |

M I r ITI‘ IE 123 E L] | R :Z:Z:::l

bimiE g javs | @ Welcomedpp | % woid mainString()

Figure 70 Browse.Members Popup Window

Press Alt+Minus (CUA) when editing a file to invoke Browse.Members Insight. The
Browse.Members popup will be shown with the list of members (either classes, methods
or fields) matching the word at the cursor position. The list may be empty if there are no
matching methods though. To find matches, type the word in the Browse Member edit
box and Browse.Members will dynamically rearrange the members' list to show the
matching ones. You can also leave the Browse.Members edit box blank to view all the
members for navigation purposes.

Browse.Members highlights the members with names exactly matching the typed word
using bold font and abstract methods using italic font.

You can select a member by navigating through the list with the help of the usual
keyboard. An Alternative way to do it is to continue typing the word; the list selection
will be changed to produce the closest match possible.

Press Enter when selecting a member and Browse.Members will browse it.

Productivity! User Manual 76
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Navigation Tools

Hyperlink.Navigate

Hyperlink.Navigate is a tool allowing easy and convenient navigation with a method
similar to that of the JBuilder built-in Symbol Insight tool.

public int lastIndex0f(int ch) {
return lastIndex0fich, count - 1):

; Clazs: “{_”} java lang String
Member: int lastindexcf
Parameters: int, int

* Beturns the index within this string of the last occurrence of the

* gpecified character, searching backward starting at the specified

J,-'frfr

Figure 71 Hyperlink.Navigate with Hint that Describes Identifier Under Cursor

To invoke Hyperlink.Navigate, press and hold the Ctrl key pointing the mouse over the
identifier you are going to navigate to. A hyperlink will appear, and if you press the left
mouse button, JBuilder will navigate to it (in the same manner as Symbol Insight does).

If you place the mouse over the identifier with the Ctrl key pressed, after some delay
the Hyperlink.Navigate popup appears that contains information about the symbol
under the cursor.

Options Dependency

You can customize delays used for invocation and closing of the Hyperlink.Navigate
popup window using the Hyperlink.Navigate Delays options on the Editor Option |
Productivity | Delays property page. Also, you can specify whether Hyperlink.Navigate
should be invoked during a debug session using the Invoke insights during debugging
option on the Editor Option | Productivity | Usage property page.

Search Results and References Highlight - Pro!

This tool is intended to highlight in the editor various things found during search or find
references operations (those things should be listed in the message pane as well). To
place highlights the special button on the view toolbar should be used. If nothing
selected in the message pane this tool uses the most recent search results related to the
current file. But it's possible to exactly specify result set to highlight by selecting root
node in the search tree (e.g. "Direct usages" or "Declarations"). To navigate through
the highlights usual Navigator keys (Ctrl+Page Up/Page Down (CUA)) are used.

Productivity! User Manual 77
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Navigation Tools

ot public Welcomedppi) |

=lcomeFrame = new WelcomeFramei();
JéPack framesz that have uzeful preferred =z
FéValidate frawes that have preset sizes
if (packFrame)

frame.pack() ;
elze

frawe.wvalidate():

Figure 72 Search Results and References Highlight

Persistent Bookmarks - Pro!

JBuilder provides bookmark functionality that allows to set bookmark associated with
particular line of the file and the return to it. However, JBuilder built-in implementation
of the editor bookmarks has some drawback — all bookmarks are actually associated
with editors, not with files thus bookmarks are not persistent between JBuilder
sessions. The Persistent.Bookmarks tool included into Productivity! is free from
drawbacks mentioned above and introduces advanced bookmarks concept as well as
offers lots of new possibilities.

Each bookmark is linked to a project (if any) and to a file and is hold its own location (as
line number) in the file as well. Every bookmark can optionally contain the Description
attribute those can be specified to allow easy identifying of particular bookmark.

There are two types of bookmarks are currently supported — persistent ones and
temporary ones. All bookmarks with Persistent attribute enabled are stored to the IDE
properties on JBuilder exit and, correspondently, all such bookmarks are loaded during
the following JBuilder run. This behavior allows pointing to the most used files and easy
navigating them anytime.

The following actions can be executed during navigating to a persistent bookmark:

1. If particular bookmark contains reference to a project this project will be opened
(if it still not opened yet) and activated;

2. The file which bookmark refers to will be opened (if it still not) and activated;

3. If bookmark location within file has a valid value, the editor will be scrolled to
the bookmark’ location.

Persistent bookmarks can be toggled and navigated using usual JBuilder shortcuts.
Numbered bookmarks are supported too. The only way to navigate unnumbered
bookmark is using the Persistent.Bookmarks.Navigate tool.

Productivity! User Manual 78

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Navigation Tools

46 if (framelize.height > screeniize.height)

EVES framedize.height = screendize.height:

4 creendize.width)
@ Tooggle Breakpoint F5

eendize.width;
endize.width - f£ra

Set Bookmark 4 0 Cti+Shifto
Toggle Bookmark Ctrl+Shift-B 1 Cti+Shift1
2 Ctri+Shift2

Manage Bookmarks... l‘\}a Ctri+Shift3 !
ey CLY 1
L1 UIManager. setLookindf ¢ CUFShIES oo
59 1 5 Ctil+Shitt5
&l catch |(Exception e) | B Cti+Shift-G
G5l e.printitackTrace () ; T CHI4ShitT
=1 ! 5 :
63 new Welcomedpp () FHTEEhIES
Gél 1 9 Ctr+Shift2
65 K

Figure 73 Setting a Bookmark Using the Gutter Context Menu

Another way of working with persistent bookmarks is using context menu on the editor
gutter.

Also, if bookmark has description associated with it, it may be displayed as hint if mouse
is placed over bookmark icon.

1 fdHeln | dhonit action nerformed

1 Code should be revised later. Output iz uzed fu:ur_debugging only I:urmed (hotionEvent e] |

@ 5] n.out.println(Taction performed™) :

Figure 74 Hint with Description of Bookmark

Persistent.Bookmarks.Navigate

This tool allows easy navigation to any bookmark from the bookmark list.
Persistent.Bookmarks.Navigate can be invoked using the Alt+Shift+B (CUA) shortcut.

Productivity! User Manual 79

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Navigation Tools

=2 Persistent Bookmarks Navigate - Navigate to 8 selected bookma

ZE Code should be rewized later. Dutput iz use...
_E Code to be rewiszed

Figure 75 Persistent.Bookmarks.Navigate

Manage Bookmarks Dialog

Productivity! provides rich functionality that allows bookmarks managing. The Manage
Bookmarks Dialog allows maintaining the bookmarks list.

@ Manage Bookmarks
Bookmarks:
| Description | Perziztent | Line o To
L [Sample numbered hookmark [#] 47
ZE |Mumbered non persistert bookmark] 135
_E |Code to be revized [#] 11 HlEE
Remowe Al
Bookmark Details Move Down
Project: file: ME%|Dev Toolz Builder SPersonalizamplesivelcomefiivelcome. .
File: file: SESDeyv ToolziBuildersPerzonalfzamplestVelcomessrcioom,. .
Line Mumber: 47
Close Help

Figure 76 Manage Bookmarks Dialog

The Manage Bookmarks dialog can be invoked using the Edit | Manage Bookmarks
menu item or using the editor gutter context menu.

This dialog provides the following controls, which allow viewing and maintaining the
bookmarks list:

Bookmarks Table

The Bookmarks Table shows the list of bookmarks. Each bookmark occupies one row in
the table while each table’s column represents particular attribute of bookmark. The
Description and Persistent columns are editable. This allows specifying values of them
using in-place editing capabilities. If Description attribute is specified, it will be
displayed in the Persistent.Bookmarks.Navigate tool and will be shown as tool tip when
mouse is placed over bookmark in the gutter. If bookmark’s Persistent attribute is
turned off, such a bookmark will not be stored on JBuilder exit.

Productivity! User Manual

80
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Navigation Tools

Go To

The Go To button provides navigation to the currently selected bookmark without
closing the dialog.

Remove

The Remove button allows removing of the bookmark is currently selected.
Remove All

The Remove All button removes all bookmarks.

Move Up

The Move Up button allows moving currently selected bookmark up in the bookmarks
list.

Move Down

The Move Down button allows moving currently selected bookmark down in the
bookmarks list.

Note: The Manage Bookmarks Dialog allows actual maintenance of bookmarks list so no
changes can be discarded or undone by closing this dialog.

View Navigator and Navigator.Insight - Pro!

The View Navigator tool provides ability to control set of source code related navigation
operations using the same way and uniform manner. The main idea of this tool is utilizing of
pair of shortcuts and a pair of appropriate buttons to execute ‘previous’ and ‘next’ navigation
operations against specified Navigate Object. Following Navigate Objects are currently
supported for Java files:

e Warning or Error
e Low Priority Issue
e Any Issue

e Editing Point

e Method

e Class

e Class or Method

e Search Result

e Local Reference

Following Navigate Objects are available for other types of text files:

Productivity! User Manual 81

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

e Editing Point

e Search Result

Productivity! — Navigation Tools

F Warning or Error
Lowy Priarity lssue

Ary lzsue

Edlitirg Poirit

|»l & -

hethiod

Class

Search Result

e[]<]

ified |

DL

Inzert
[166 | Modified | Insert

Figure 77 View Navigator and View Navigator menu

The Navigator control is placed at the bottom right of the editor view (right under the
vertical scrollbar) and includes the Previous, Next and Select Object To Navigate
buttons. The Previous and Next buttons allows navigating through the objects (you can
use Ctrl+Page Up and Ctrl+Page Down shortcuts (CUA) too). The Select Object To
Navigate button allows choosing an object to navigate by using appropriate menu items
form popup menu shown on button release. Another way choose object type to navigate
is using Navigator.Insight, which can be invoked using the Alt+Shift+N (CUA)

shortcut.

nuEarl

Naw'gatc-r. Insight - Select an abfect o navigate

Warning or Error
Low Priority Issue
iny I=sue

Editing Point
Method

Class

Search Fesult

0 d

Productivity! User Manual

Figure 78 Navigator.Insight

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

82

Productivity! — Information Tools

Information Tools

Help.Insight

Productivity! includes several advanced tools those allows you instantly get information
about required Java source code element.

With Productivity! Information tools you can:

e Easily view help topic (if one exist) for the identifier in the caret position
— Help.Insight and Hyperlink.Help;

e Get instant help selected item in JBuilder Code Insight — Help.Insight;

e Get full information about context of source code in the current caret
position — Context.Insight;

Help.Insight is a tool allowing you to easily view help topics, if any, for an identifier or
a member within the current context in the cursor position. Help is shown in a
convenient popup window. Help.Insight extracts and displays information relating to a
particular code only - for example, for a particular method, not for all classes.

frameiize = frame.get3ize();
Aize.he L T 'E Lidanager. getsystemliookd hdFeelCiassarmer) by
ze.helid
Size.wid public static String getSystemLookAndFeelClazssHamed) :
e Hl':.it] Returns the name of the LookAndFeel class that implements the native
Locatio syatems look and feel if there is one, otherwize the name of the default cross
platform Look&ndFesl class.
Wisible
lhod See Also:
ic void zetl ookAndFeeljavax. swing LookAndFesal],
getCrozsPlatformlook AndF eplClazsiamei
er.setl .
ager.getiystenlookindFeelClassNane(]) ;

Figure 79 Help.Insight Popup Window

To invoke Help.Insight for a symbol at the cursor position, place the cursor over the
identifier for which you need help and press Shift+F1 (CUA).

To invoke Help.Insight for a member within the current context, place the cursor in the
bounds of a method or class for which you need help and press the Alt+F1 (CUA)
shortcut. Help.Insight shows the appropriate JavaDoc help topic, if any, or tries to find
and show the appropriate one for a super class or method in other case.

Navigation Pane

The Navigation Pane at the top of the popup shows different gadgets intended to control
the popup. You can use the Back and Forward buttons (or Alt+Left and Alt+Right keys,
respectively) to navigate through the help topics history or you can use the Open the

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 83

Productivity! - Information Tools
Whole Topic button to open the complete help topic in the Help Viewer window. The
Context label shows the context or an HTML file name depending on the ability to
resolve any.

Hyperlink.Help

An Alternative way to invoke Help.Insight is to use Hyperlink.Help by placing the mouse
cursor over an identifier for which you need help while holding the Alt button.

t.gethefaul tToolkitc(). getScrgienSize 0r:
etiize(]: b

a5 'El & Toolkit getScreensizer)
Size.height
ze. height: | public abstract Dimension getScreenSizer)
ize.width
TEs . i) etz the size of the screen.
e.width;
.width - £y Returns:

the size of this toolkit's screen, in pixels.

T

Figure 80 Help.Insight Popup Invoked via Hyperlink.Help

In this case, for space-saving purposes, the Help.Insight popup doesn't show the
Navigation Panel. It will only be shown after activating any hyperlink within the popup
window.

Integration with Other Insights

Another feature of Help.Insight is integration with JBuilder built-in Memberlnsight and
other Productivity! Insights.

lkit.getDefaultToolkit().geticreeniize(]; | |
Java.awt Toolkit

public static Toolkit getDefault Toolkit()

* getDefaultToolkit (] Toolkit]]
g3 getProperty [String, 3tring) String Gets the default toolkd.
STz e. WLy If there iz a system property named " awe _toolkit® that property is
ize.width; treated as the name of a class that is & subclass of Toolkic.
ze.width - framedize.width] / 2, (screendi If the system property does not exist, then the default toolkit uzed is the

clazz named "sun. awt weotif. MToolkit", which is & motif
implemertation of the Abstract Window Toolkit.

Also loads addtional classes into the WM, using the property
‘aszistive_technologies' specified in the Sun reference implementation by a
line in the 'accessibility properties’ file. The formis

o[] args) | "aEgiztive_technologies=.." where the ".." iz & comma-separated list of

assistive technology classes to load. Each class is lnaded in the order |
=

Figure 81 JBuilder Member Insight with Help.Insight Invoked

If such integration is enabled, the popup window of Help.Insight will be automatically
shown for a currently selected item in Member Insight or Productivity! Insight popup.
You can also force showing Help.Insight for a selected item using Shift+F1 shortcut
(CUA).

Productivity! User Manual 84

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Information Tools

Options Dependency

You may enable integration of Help.Insight with other Insights using Help.Insight
options on the Editor Options | Productivity! | Usage property page. To specify delays of
Help.Insight invocation you can use the Editor Options | Productivity! | Delays property

page.

Hyperlink.Help

Hyperlink.Help is a tool that allows easy and convenient viewing help topics for
particular symbols.

t.getDefaul tToolkit() . geticreeniize () ;
etiize(l; EE@

§ize. height @ o 'TEI H Toolkit getScreensizer) >

ze. height: | public abstract Dimension getScreenSizer)
ize.width)
e.widch;
.width - £y Returns:

the size of this toalkit's screen, in pixels.

Gets the size of the screen.

=

Figure 82 Hyperlink.Help Popup Window with Help for Method

To invoke Hyperlink.Help, press and hold the Alt key and point the mouse over the
identifier, which you need help with. The identifier becomes a hyperlink, and if you
press the left mouse button, the built-in JBuilder help is shown for it.

If you place the mouse over the identifier with the Alt key pressed, after some delay the
Help.Insight popup appears that contains exact help about the symbol under the cursor.

Options Dependency

You can customize delays on invocation and closing of the Hyperlink.Help popup
window using the Help.Insight options on the Editor Option | Productivity! | Delays
property page. Also, you can specify whether Hyperlink.Help should be invoked during
a debug session using the Invoke insights during debugging option on the Editor Option
| Productivity | Usage property page.

Context.Insight

Context.Insight is a tool that allows you to check context of the current cursor position.
Context.Insight collects information about all classes and methods and shows it using
the Insight popup window.

To invoke Context.Insight please use the Ctrl+Q (CUA) shortcut.

Productivity! User Manual 85

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Information Tools

Funnable runniahle = new Runnahle()

{
public woid runi)

{
public class ContextlUtils
public static class ContextlUtils. PathDeclaration

wvoid %ﬂPathiList aPath)
C 2 ContextlUtilss]l extends Runnable

¥ public woid runi)

Figure 83 Context.Insight Popup Window

Another feature supported by Context.Insight is navigation. If you place the mouse
cursor over an identifier within the Context.Insight popup window, the hyperlink
appears and activation of hyperlink leads to navigation to the identifier.

In some cases (particularly, within classes with significant amount of inner classes), the
Context.Insight may display only upper class information. Such behavior is explained
by definite limitations of the JBuilder JOT subsystem that requires significant amount of
time (up to tens of seconds) to retrieve information about the inner classes. To avoid
hang-up of JBuilder, the time required for context information gathering may be limited
in Editor Options | Productivity! | Delays page. So, if JOT provides no data within this
interval, only upper class information is provided. The same reason may cause
relatively slow performance of Context.Insight if the cursor is on the white space
between class methods. The same limitations may affect other tools using the same
functionality (Override.Insight, Implement.Insight).

Options Dependency

You can specify Context Discovering Timeout using the Editor Options | Productivity! |
Delays property page.

Productivity! User Manual 86

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! — Options

Productivity! Options

Productivity! Pro offers rich abilities for customizing its functionality and tuning it
exactly for your own unique code style and your particular needs.

You can manage Productivity! settings in convenient and customary ways using
standard JBuilder approaches for configuration.

Most of Productivity! settings are concentrated in two JBuilder dialogs: the Project
Properties and Editor Options dialogs.

The Project Properties dialog contains the following property pages added by
Productivity!:

e General where you can specify options for Imports.Beautify and Packages
Exclusion.

e Code Style where you can specify options for Code Generation.

e JavaDoc where you can specify options for JavaDoc generation.

e Cache where you can specify options for managing Productivity! classes cache.

e Assistant where you can specify options for managing Assistant behavior.

e Tools where you can specify options for various Productivity! tools.

The Editor Options dialog includes the following property pages added by Productivity!:

e General where you can specify options for Import Statements Generation,
Search Options, Sorting options, Autocomplete, Insight Usage and Invocation
insights during debugging.

e Usage where you can specify how to use (or not use) the appropriate tools

¢ Delays where you can specify options for Hyperlink.Help and Hyperlink.Navigate

invocation and closing delays, Help.Insight delay used for integration with
JBuilder Member Insight, and Context Discovering timeout.

e Smart.Templates where you can customize the Smart.Templates behavior and
maintain the templates list.

e Assistant where you can customize the Assistant behavior.
e Tools where you can customize miscellaneous tools behavior.

e Smart.JavaDoc where you can customize the Smart.JavaDoc behavior.

In addition, with the help of Editor Options Dialog you are able to customize options for
the Smart.Braces tool. These options can be found on the Editor property page in the
Editor Options tree view.

Also, the IDE Options dialog includes a property page added by Productivity!, which

allows user to select the Metal theme to be used by JBuilder.

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com 87

Productivity! - Options

Project Properties Dialog

Packages
Exclusion

Productivity! User Manual

The Project Properties dialog contains the following property pages added by
Productivity!:

e General where you can specify options for Imports.Beautify and Packages
Exclusion

e Code Style where you can specify options for Code Generation
e JavaDoc where you can specify options for JavaDoc generation
e Cache where you can specify options for managing Productivity! classes cache

General Page

The Options page of the Productivity! Project Properties pages allows to specify the
following options:

1. Packages Exclusion

To set these options for all new projects, choose Project | Default Project Properties.

Productivity! uses cache of classes included into particular project. By default, this
cache includes all classes found according to JBuilder paths settings. In general, this
includes: classes from JDK, classes in project libraries and project classes themselves.
It is obvious that in large projects the amount of such classes may achieve several
thousands. The Productivity! popup windows allow reducing the excessive amount of
classes by eliminating those not used (such as sun.* and sunw.*, which are included
into JDK but hardly used in your project directly) - with the help of this option you can
exclude unnecessary packages.

Packages Exclusion

[] Erskile packages exclusion

Exclude packages

Figure 84 Package Exclusion Options

Enable packages exclusion
Select this checkbox if you wish to exclude classes belonging to particular packages

from showing them in the Productivity! insights. With this checkbox disabled, all classes
from Productivity! cache are shown.

88

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Methods
Parameters
Naming

Fields Naming

Productivity! User Manual

Productivity! - Options
Exclude packages

Using this panel, you can specify packages to be excluded. Either type the package
name to exclude it manually (only valid Java symbols are allowed, ;' separates
packages) or add the package using the Select Package dialog invoked by the Add...

button. The sequence order of packages being specified is inessential.

Code Style Page

The Options page of the Productivity! Project Properties allows user to specify the
following options:

1. Methods Parameters Naming
2. Fields Naming
3. Generate Throwing java.lang.UnsupportedOperation Exception
4. General Options
To set these options for all new projects, choose Project | Default Project Properties.

This property page allows customizing the code generated with Productivity! tools and
adjust it to your personal coding style.

This option allows customizing names of parameters used in methods generated by
Productivity! tools. Any parameter name has a customizable prefix and suffix. With the
appropriate checkbox enabled, you'll be able to specify the respective part of a
parameter name in the edit box. In other words, you can specify the value to be used
when naming parameters.

Methiods Prameters Matming

[w] Use prefix |a | [¥] Use suffix |Parameter

Figure 85 Methods Parameters Naming Options

Productivity! tools generate names of parameters if their actual names are unknown
(when source code of a class is unavailable). By default, it utilizes usual Java convention
for parameters naming, but you can force it to use prefixes and/or suffixes according to
your own requirements.

This option allows customizing names of fields according to the coding style you prefer.

Fields Maming

[#] Use prefix |f | [Use suffix

89

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Generate
Throwing ...

General

Productivity! User Manual

Productivity! - Options

Figure 86 Fields Naming Options

You can customize a prefix and suffix of a field name. With appropriate checkbox
enabled, you'll be able to specify the respective part of a field name in the edit box.

The current version of Productivity! uses this option in GetSet.Creator. Depending on
values specified, GetSet.Creator can define the appropriate name of the get/set method
(by removing a prefix and suffix) and the appropriate parameter names.

Using these radiobuttons you can exactly specify the rules of code generating in the
method body. If you enable Generate always radiobutton, Productivity! always
generates method body with TODO comment and the code that throws
java.lang.UnsupportedOperation exception.

Generate throwing of java lang UnsupportedOperstion exception
i Generate always

i1 Generate anly when needed

Figure 87 Generate throwing of UnsupportedOperationException Options

If you enable Generate only when needed radiobutton, Productivity! generates the code
that throws exception only for the method with non-void return type.

These options provide more opportunities for you to fine-tune the code generated by
Productivity!

ZEneral
[C] Zenerate method body nesr current cursar position

[[] Generate JavaDoc during methods generation

Figure 88 General Code Style Options

Generate method body near the current cursor position

This option allows you to specify the anchor position where the generated code will be
inserted. If the appropriate checkbox is selected, the whole code will be generated in
the position close to cursor (if the cursor is within a method, the code will be generated
near this method). If this option is disabled, all the methods will be inserted in the end
of a class definition and the constructors will be inserted after the last defined
constructor. The only exception is the generation of get/set methods - if this option is
disabled, a get/set method will be inserted after the appropriate set/get method.

Generate JavaDoc during methods generation

90

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

This checkbox is used to specify whether the JavaDoc comment templates will be
generated during the methods generation. If you enable it, all the methods generated
by the Productivity! tools will include the JavaDoc comment templates (the same as
those produced by Easy.JavaDoc). The only exception is the generation of anonymous
inner classes - JavaDoc will never be generated during the anonymous inner class
generation.

JavaDoc Page

The Easy.JavaDoc page of the Productivity! Project Properties pages provides the
following options:

1. Policy for handling the existing JavaDoc comments
2. Methods JavaDoc Generation

3. Classes JavaDoc Generation

4. Auto Generation

To set these options for all the new projects, select Project | Default from the Project
Properties.

All the options on this page are applicable to JavaDoc generation by both manual
invocation of Easy.JavaDoc (default shortcut is CTRL+D) and by invoking Easy.JavaDoc
during method generation (in Override.Insight,

Constructor.Insight, Implement.Insight and Smart.Instantiate tools).

Please note that all these options are not applicable to the code generated for
anonymous classes, since JavaDoc is never generated for them.

If JavaDoc
Already This option allows you to specify the processing policy for the existing JavaDoc
Exists comments.
If JavaDoc already exists
i Skip genetation i1 Override existing & Prompt
Figure 89 If JavaDoc exists Options
You may define how Easy.JavaDoc will handle the existing JavaDoc comments. If
JavaDoc already exists for a method or class, Easy.JavaDoc may either skip the
generation of JavaDoc template and override the existing block by its own one, or
prompt your confirmation for overriding of the existing comment.
";"ae\’/tgggcs: These options allow you to specify the tags that will be included into the generated

Generation JavaDoc template for the method.

Productivity! User Manual 91

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Classes
JavaDoc
Generation

Auto
Generation

Productivity! - Options

hethods Javalboc Generation
[[] Generste mauthor

[] Generste meee

[] enerste meince

Figure 90 Methods JavaDoc Generation Options

By default, Easy.JavaDoc always generates @param, @throw and @return (except void
methods and constructors) tags based on the method definition. However, you may
expand the content of generated template using Methods JavaDoc Generation option.
You may select the appropriate checkbox to enable generation of the corresponding
tag. Please note that if you select the "Generate @author" check box, Easy.JavaDoc will
use the name of the Author as specified on the Project Properties | General property

page.

This option allows specifying the tags that will be included into the generated JavaDoc
template for the method.

Clazzes JavaDoc Generation
[] Generate @author

[[] Generate i@zee

[[] Generate @since

[] Zenerate @version

Figure 91 Classes JavaDoc Generation Options

By default, Easy.JavaDoc always generates a description only. However, you may
expand the content of generated template via the Methods JavaDoc Generation option.
You may select the appropriate checkbox to enable generation of the corresponding
tag. Please note that if you select the Generate @author checkbox, the Easy.JavaDoc
will use the name of the Author as specified on the Project Properties | General property
page. The same happens with the Generate @version checkbox.

You may specify whether default comments should be generated for the get/set
methods using Automatically generate text of comments for get/set methods.
Please note that this option is applicable only to GetSet.Creator tool.

Auto Generstion

[] Automatically generste text of comments for getizet methods

Productivity! User Manual 92

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Figure 92 JavaDoc Auto Generation Options

If you enable this checkbox together with the automatic generation of JavaDoc during
methods generation (Project Properties | Productivity! | Code Style | General), then the
GetSet.Creator tool will insert default description for the method, default description for
the method return value (getter) and default description for the method parameters
(setter).

Cache Page

The Cache page of the Productivity! Project Properties pages provides the following
options:

1. Autorefresh option
2. Refresh groups
3. Refresh Now

To set these options for all the new projects, select Project | Default from the Project
Properties.

The main goal of Productivity! is to increase the developers' productivity to its
maximum. Since, presumably the application will be frequently used, it should work as
quickly as possible. The project may contain several thousands of classes (including the
classes directly included into the project, JDKs and required libraries classes) and
constant search through them would be highly inconvenient. Thus, Productivity! builds
classes cache right after the first invocation and then stores it to hard drive providing for
future re-use. After cache build or load, Productivity! uses it for quick access to the
classes according to the specified criteria.

Options grouped on this page allow you to control the process of class cache building
and refreshing.

Autorefresh
Options This option allows you to specify whether cache will be refreshed automatically.

The most frequently changed classes from all the classes used by the project are those
included into the project itself, in other words, the classes developed by you within a
project. Whereas changing JDK and adding or removing libraries are very rare
operations, new classes within a project appear, change their location or become
renamed every day.

Auto refresh options
[v] Refresh project classes after project rebuid finishing

[w] Refresh project classes after project make finishing

Figure 93 Cache Auto Refresh Options

The Auto refresh options are designed to make the cache content as up-to-date as
possible, offering convenient usage of such Productivity! tools as Class.Insight and

Productivity! User Manual 93

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Refresh
groups

Productivity! - Options

Browse.Insight with your classes, and also to reduce the necessity of manual refresh of
Productivity! classes cache.

This option enables your class cache to be refreshed after every successful project build
or make. Refresh of classes included in the project is normally a short operation that
requires much less time compared to project build, so we recommend that these
options be always enabled.

Please note that the class cache refresh will be performed only under the condition that
the whole project build or make is successfully completed (not just some of its files),
and that there were no compiler errors during the build process.

You may tune the cache refresh process by using the refresh groups. Refresh group is a
set of packages that may be refreshed independently. Thus you may specify a set of
refresh groups that would include the most frequently changing classes, and refresh
their cache individually.

—Fefrezh groups (packages starts from specified roots].
Mame Packages Add ey
JOK core jara; =
Swing jEEx Ening Edit .
javax java —
Remove
Refrezh

Figure 94 Refresh Groups Options

You may specify your refresh groups using the table shown above. Use Add new...
button to create a new group, Edit button to edit the existing group, and Remove button
to delete a group.

Refresh button allows you to refresh the selected group.

Please note that double-clicking a group row brings you up to group editing (similar to
pressing the Edit... button).

Creating new groups as well as editing the existing ones is performed via the New/Edit
Refresh Group Dialog.

Productivity! User Manual

94

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Refresh Now

Auto Import
Policy

Productivity! User Manual

Productivity! - Options

Mew Refresh Group |
Group Mame: || |
Fackages to refresh @ Select Package...

(] Cancel

Figure 95 New/Edit Refresh Group Dialog

Please use the Group Name field to specify the name of the group to be refreshed, and
the Packages to refresh field to specify the packages to be included into the group. You
may specify the packages for inclusion by either manual typing (only valid Java symbols
are allowed, separator for packages is ;), or by adding them via the Select Package
dialog, invoked by the Add... button. The order of specified packages is not essential.

These options enable immediate start of the refresh operation for the Productivity!
classes cache.

efresh Moy

Refresh Project Refresh Libraries Refresh Al

Figure 96 Refresh Now Options

You may choose from the following refresh types: of the classes included into the
project only; of the project libraries (which is crucial to do after adding or removing
libraries); or of the whole cache (including the classes from JDK).

Assistant Page

The Assistant page allows specifying the following options:

1. Auto Import Policy
2. Frequently Used Classes

To set these options for all the new projects, select Project | Default from the Project
Properties.

This option panel allows maintaining the list of Auto Import Policy entries. Such list is
used to determine, which action should be executed for each particular short class
name during auto import process.

95

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Auta Import Palicy
Marne | Irgacirt | Full Clazs Matme |
& Linigue
Tree Patticular cotn.zun toolz javac vs tree Tree
A

Figure 97 Auto Import Policy

Each entry occupies one row in the list and it's properties are shown in the appropriate
columns. All those properties cane be edited right in the list using "in-place editing"
approach. Auto Import Policy entry properties are:

¢ Name - specifies short name of the class. Predefined entry with name "*" allows
specifying default behavior for all names not stated in the list.

e Import - specifies action to be done. Possible actions are:
o Never - no class will be imported.
o0 Any - first suitable class will be imported.
o0 Particular - class with exactly specified name will be imported.
o0 Unique - unique suitable class will be imported.

e Full Class Name - specifies full class name to import. This property can be
applied to Particular action only.

The Add and Remove buttons allow adding new and removing existing entries. Note,
predefined entry "*" can't be removed.

Frequently
Used Classes
This option panel allows maintaining the list of frequently used classes. Such list is used

to determine particular class to import or prompt in case of existence of several different
candidates.

Productivity! User Manual 96

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Frequertly Used Classes

cotn batland primetime node Mode;
corn borland prirmetirme v fs U,
java.awt Component;

jerva il Diater;

java util Enumersation;

javax swving text Element;

jEvax svving text Position;

Acdd...

Figure 98 Frequently Used Classes

Each entry in that panel should be ended by ;' symbol. The sequence order of classes
being specified is inessential. The Add... button allows adding a class using the Select

Class dialog.

Tools Page

The Tools page allows specifying the following options:
1. Classes Highlight

To set these options for all the new projects, select Project | Default from the Project

Properties.
Classes
Highlight
Productivity! allows highlighting of certain classes using Java | Extra keyword style and
these options allows fine tuning this functionality.
Highlight Clazses
[¥] Erable Clazzes Highlight
Clas=ses To Highlight
Add.
Figure 99 Classes Highlight
Enable Classes Highlight
Select this checkbox if you wish to turn highlight classes on.
Classes to Highlight
Productivity! User Manual 97

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options
Using this panel, you can specify list of classes to be highlighted. Each entry in that
panel should be ended by ;' symbol. The sequence order of packages and classes being
specified is inessential. It's possible to use the following entries:
e * - to highlight all classes.
e package.* - to highlight all classes belonging to specified package.

e package.class - to highlight exactly specified class.

The Add... button allows adding a package or class using the Select Package or Class
dialog.

Editor Options Dialog

The Editor Options dialog includes the following property pages added by Productivity!:
e General where you can specify options for Import Statements Generation,
Search Options, Sorting options, Autocomplete, Insight Usage and Invocation
insights during debugging.
e Usage where you can specify how to use (or not use) the appropriate tools
e Delays where you can specify options for Hyperlink.Help and Hyperlink.Navigate
invocation and closing delays, Help.Insight delay used for integration with
JBuilder Member Insight, and Context Discovering timeout.
e Tools - Pro!
e Assistant — Pro!
e Smart.Templates — Pro!
e Smart.JavaDoc — Pro!
In addition, with the help of Editor Options Dialog you are able to customize options for
the Smart.Braces tool. These options can be found on the Editor property page in the

Editor Options tree view.

Smart.Braces Options (Editor Options)

The Smart.Braces tool can be customized via the Editor Options dialog box.

As soon as Productivity! is installed, additional node appears in the Editor Options tree
view (Editor Options | Editor property page)

Editor aptions:
@ {1} Smart Braces options
@ (3] Smart key options

Productivity! User Manual 98

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Figure 100 Smart.Braces Options

This node contains the Smart.Braces customization options. You may fully customize all
the features of Smart.Braces to satisfy your needs and goals.

Editor aptions:
D Smart Braces options
Complete curly brace
Complete curly brace and indent
Complete brace
Complete square brace
Complete Strings
Complete characters
se < key to override current options
Lo Smart key options

Figure 101 Smart.Braces Options (Expanded)

The following options are available:

Complete curly brace

Allows you to specify whether Smart.Braces should complete the curly brace ({)
Complete curly brace and indent

Allows you to specify whether Smart.Braces should complete the curly brace ({) and
make the indent in accordance with the currently set size

Complete brace

Allows you to specify whether Smart.Braces should complete the brace (()

Complete square brace

Allows you to specify whether Smart.Braces should complete the brace ([)

Complete Strings

Allows you to specify whether Smart.Braces should complete the string constants ()
Complete characters

Allows you to specify whether Smart.Braces should complete the character constants ('

)

Use ALT key to override the current options

With this option enabled, the current options can be overridden provided the ALT key is
pressed when typing. For example, if Complete curly brace option is enabled, pressing
{ with the ALT key will only insert the opening curly brace without the corresponding
closing one.

Productivity! User Manual 99

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

NOTE:

Import
statements
generation

Productivity! - Options
If a non-standard JBuilder keymap is used (such as Vi/VIM), the Smart.Braces may
conflict with the keymap settings. Apparently, for keymap VI the * and ** symbols may be
overridden by Smart.Braces. It is justified by the features of the vi implementation
(improper implementation of the Keymap default action).
However the part of Smart.Braces functionality that causes the conflict can be disabled.
To do this, you should add the following lines into your JBuilder.config file (placed in
JBuilder/bin directory):
vmparam —DProductivity.Smart.Braces.CompleteCharacters=no

vmparam —DProductivity.Smart.Braces.CompleteStrings=no

General Page

The General page of the Productivity! Editor Options page provides the following
options:

¢ Import statement generation
e Search options
e Sort classes by

e Autocomplete

Productivity! contains a number of tools designed for imports modification -
Class.Insight, Implement.Insight, Override.Insight, Constructor.Insight,
Imports.Beautify and Smart.Instantiate.

All these tools share common settings for the import statements modification so
modification of these options will affect all tools mentioned above.

Import statements generation
i Impart particular class
i Import all (%) classes from package

i Import particular class and consolidate packages

lmport maximum (3 Clazzes from the zame package

Figure 102 Import statements generation options

The following options are available for management of import statement modifications:
Import particular class

If this option is turned on, the import statement for the required class will be inserted,
however imports consolidation will not be applied.

Productivity! User Manual

100

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options
Import all (*) classes from package

If this option is turned on, all (*) classes from all the packages will be imported and
particular imports from the same package will be removed. This option is useful when a
large amount of classes from the same package are used.

Import particular class and consolidate packages

If this option is turned on, a particular class will be imported if the number of imports
from the same package does not exceed the maximum allowed. The maximum amount
of classes to be imported without import statements consolidation is controlled by the
"Import maximum N classes from the same package field.

If the number of imports from the same packages exceeds the specified limit, all the
imports of a particular class from the required package will be removed and import
statement for the whole (*) package will be inserted instead.

SS‘;?:S These options allow you to tune the algorithm used for search of items within the
Productivity! popup lists.
Search options
[w] Uze "start=ivith" method
[[] Caze sensitive
[] Stop on exact match
Showe additional (200 | clazses
Figure 103 Search options
The following options are available for search control:
Use "startsWith" method
If this option is turned on, all the search operations will be performed for the string with
the value of the word at cursor. Otherwise, the search will include the strings that
contain the required substring (usually a word at cursor).
Case sensitive
If this option is turned on, the case sensitive search algorithm will be used.
Stop on exact match
If this option is turned on, only classes with the names that exactly match the word at
cursor will be shown.
Show additional classes
Productivity! User Manual
Y 101

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

NOTE:

Sort classes
by

Autocomplete

Productivity! - Options

If the Stop on exact match option is disabled, you may specify the amount of classes
you would like to see in the popup list. Since the overall amount of classes may be quite
important, you may make the list of classes less extended.

This option is common for the following Insights: Class.Insight, Browse.Insight,
Implement.Insight and Smart.Instantiate

These options allow controlling the sorting of classes for the following Insights:
Class.Insight, Browse.Insight, Implement.Insight and Smart.Instantiate.

Sart classes by
i1 Class name then by package name

i Full-gualified class name

Figure 104 Sort Classes By options

The following options are available for classes sorting control:
Class name then by package name

If you select this option, the classes will be sorted according to the class name and then
class package;

Full-qualified class name

If you select this option, the classes will be sorted according to their full-qualified
names.

Productivity! allows automatic execution of the Insight primary action when there is
only one possible variant found. In this case the action will be performed without the
Insight popup window being shown.

Autocomplete
[] Use sutocomplete

Figure 105 Autocomplete options

Use autocomplete

If this checkbox is enabled, the autocomplete option will be turned on, and Productivity!
will automatically complete the actions if possible.

Productivity! User Manual

102

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity!
Insights
Usage

Productivity! User Manual

Productivity! - Options

Usage Page

The General page of the Productivity! Editor Options page provides the following
options:

1. Productivity! Insights usage

2. Invoke insights during debugging

3. Help.Insight

4. Highlight.Navigate popup hiding mode

5. Superclass Changing Policy

Two tools included into Productivity! - Class.Insight and Browse.Insight - use the same
default shortcuts (Ctrl+Alt+Space and Ctrl+Minus, respectively (CUA)) as JBuilder
built-in tools. If you want to continue using the JBuilder built-in tools you may disable
the Productivity! insights startup using this option.

Productivity! Insights Uzage
[¥] Use Class Insight
[Showe Clazs Insight and Smart Instartiste popup as list

[#] Use Brovese Insight

Figure 106 Productivity! Insights Usage options

Use Class.Insight

If this checkbox is not selected, the original JBuilder tools will be invoked instead of
Productivity! Class.Insight by pressing the appropriate shortcut.

Show Class.Insight and Smart.Instantiate popup as list

If this checkbox is selected, the popup window used by Class.Insight and
Smart.Instantiate will not include the Navigation Pane and will be similar to JBuilder
built-in Member Insight.

Use Browse.Insight

If this checkbox is not selected, the original JBuilder tool will be invoked instead of
Productivity! Browse.Insight by pressing the appropriate shortcut.

103

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Invoke During debugging, JBuilder provides ability to inspect the symbol under cursor using the
SOp_UpS appropriate popup window. Since both JBuilder and Productivity! Hyperlink.Navigate
dgg':;gging windows are invoked by placing mouse over the symbol with the CTRL key pressed
down, in some cases these windows may overlap.
Invoke popups during debugging
[#] Hyperlink Help
[#] Hyperlink Mavigste
Figure 107 Invoke popups during debugging options
To eliminate this, you may disable Hyperlink.Help and Hyperlink.Navigate popup
windows if there is an active debugging session.
Help.Insight o
You may specify whether Help.Insight should be integrated with another insights.
Help Insight
[#] Irtegrate Help Insight wwith JBuilder Member Insight
[¥#] Irtegrate Help Insight wwith Productivity! Insights
Figure 108 Help.Insight options
Integrate Help.Insight with JBuilder Member Insight
If this checkbox is selected, Help.Insight will be integrated with JBuilder Member
Insight. In such mode, as soon as you change the selection within the Member Insight
popup window list, Help.Insight with the help for a selected item will appear near the
Member Insight popup window.
Integrate Help.Insight with Productivity! Insights
If this checkbox is selected, Help.Insight is integrated with all the insights included into
Productivity!. Please note that even if you disable this integration, you will still be able
to invoke Help.Insight for a selected item in the insight popup list. To do this, you just
need to press the shortcut key normally used for Help.Insight invocation (the default
shortcut is CTRL+F1 under CUA) when Productivity! insight is being used.
Hyperlink
popup hiding This option allows you to hide the Hyperlink.Navigate popup window.
mode
Highlighit Mavigste
[Close popup window on Hyperlink hiding
Figure 109 Highlight.Navigate options
If selected, the popup window will be hidden together with the hyperlink. If not, the
popup window will be closed in accordance with the delay specified on the Delays page.
Productivity! User Manual
Y 104

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Super Class

Productivity! - Options

This option allows you to specify how the Productivity! Implement.Insight tool will

Changing ¢ !] v
Policy handle the situation when an extra super class is assigned to a class.
—=uperclass Changing Policy
) Mever change W) Always change () Show promyt
Figure 110 Superclass Changing Policy options
In such case Implement.Insight will perform the following actions depending on the
currently selected value:
Never change - Implement.Insight will not change the super class and will not
implement methods from the proposed super class.
Always change - Implement.Insight will change the super class to the selected one and
will override all abstract methods.
Show prompt - Implement.Insight will show a prompt dialog allowing you to specify
what should be done.
Delays Page
The Delays page of the Productivity! Editor Options page provides the following options:
1. Hyperlink.Help Delays
2. Hyperlink.Navigate Delays
3. Help.Insight Delay
4. Context Discovering Timeout
Hyperlinks With these options you may specify the delays used for invocation and closing of popup
Delays windows displayed by the Hyperlink.Help and Hyperlink.Navigate tools.
—Hyperlink Help
Imvocation delay Clozing delay
' b= 275 e 55 zer
rHyperlink Mavigation
Invocation delay Closing delay
') 1 252 zec | 2k 1 24 42 zec
Figure 111 Hyperlinks options
Productivity! User Manual
Y 105

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Help.Insight
Delay

Context
Discovering

Productivity! - Options

With this option you may specify the Help.Insight delay for JBuilder built-in Member
Insight as well as for Productivity! insights.

Help Insichit

Invocation Delay

0.85 zec

Figure 112 Help.Insight options

You may also indicate whether Help.Insight will be integrated with the JBuilder built-in
insights using the Enable Help for built-in JBuilder insights checkbox. From the Enable
Help for Productivity! Insights option you can specify whether or not Help.Insight will be
integrated with the insights included into Productivity!.

Invocation delay
With this slider you may define the timeout between the time when a member in

Member Insight (or Productivity! Insights) is selected and when the Help.Insight popup
window is displayed.

In certain cases, (particularly, for the classes with a large number of inner classes),
Context.Insight may display only the upper class information.

Context Discovering
Timeout
I 4 zec

[#] Include inner claszes

Figure 113 Context Discovering options

The reason for this is the limitation of JBuilder JOT subsystem that requires significant
amount of time (up to tens of seconds) to retrieve information about the inner classes.
To avoid hang-up of JBuilder, the time required for collection of context information was
limited to 2 seconds. Thus, if JOT fails to provide the data within this interval, only the
upper class information is selected. Relatively slow performance of Context.Insight
when cursor is placed on the white space between class methods can also be justified by
these reasons. The same limitations may affect other tools that use the same
functionality (Override.Insight, Implement.Insight).

From this option you can specify the maximum time required to discover the context.

Tools Page — Pro!

The Tools page of the Productivity! Editor Options page provides the following options:

1. Smart.Clipboard;

Productivity! User Manual
4 106

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Smart.Clipboard

Smart.Braces

Productivity! User Manual

Productivity! - Options

2. Smart.Braces;

The Smart.Clipboard group allows performing tuning of Smart.Clipboard Tools.

—=tmnart . Cliphoard
eneral Option nzert Import Statements on Paste
Cliphoard history zize IE 1 Alweays
[¥] Indent block on paste (W Show prompt
i1 Mever

Figure 114 Smart.Clipboard options

General Options

This options group provides ability to specify size of clipboard history (clipboard buffer)
and enable/disable automatic indentation of the inserted block according to current
indent level (this option is applicable to pasting Java code into Java files).

Insert Import Statements On Paste

This set of radio buttons provides ability to specify policy for import statements
generation that should be used during pasting of Java code block (this option is
applicable to pasting Java code into Java files). If this option is not disabled,
Smart.Clipboard will optionally insert appropriate import statements for all classes
found in the copied code fragment.

The Smart.Braces options group provides ability to customize behavior of Smart.Braces
and Matching.Code.Highlight tools.

r=mart Brace
—Braces Highlight

[w] Highlight celsy

Delay T =) 1 075 =ec

—Braces Highlight Expiration

[s] 2l highlight expirstion

Delay L] 1 25 zec
hlatching Brace Code

[#] Show matching code popup

Delay ¢] 1 15 sec

Figure 115 Smart.Braces options

107

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Using this options group, the user is able to specify delays used for highlight, expiration
and matching code popup displaying.

Assistant Page — Pro!

The Assistant page of the Productivity! Editor Options page is used for customizing of
Productivity! Assistant and provides the following options:

1. Issue Highlight Style
2. Assistant Popup Delay
3. Auto Fix Errors

4. Rename Assistant

Issue Highlight The Issue Highlight Style options group provides ability to specify line style and color for
Style visual marks those are used to highlight issue in editor.

=zue Highlight Style

Pricrity: ||Low || Style: |:|D|:d‘ted Ling - Colar ...

Figure 116 Assistant Issue Highlight Style options

g-ssi?tarjts The Assistants Displaying Delay option allows specifying delay should be used to display
D:;r;yaylng Assistant popup.

Azsistant Dizplaying Delay

Delay | {7} 1 15 zec
Figure 117 Assistant Displaying Delay
Auto Fix The Auto Fix Errors options allow enabling/disabling auto fix functionality for all or

particular types of errors.

Auta Fix Errors

vl Enable auto fix errors
[¥] Eralle auto type cast
[v] Enable autn import

Figure 118 Auto Fix Options

Productivity! User Manual 108
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Rename

Assistant The Rename Assistant options allows enabling/disabling rename functionality for all or

particular types of entities. It's also possible to specify shortcut to start refactoring using

these options. If the Enter key is chosen to start refactoring the Ctrl+Enter key allows
simple renaming and vice versa.

Rename Assistant
[¥| Enable Rename Assistant
@ Enable clazs rename assistant E Enakle field rename assistant

[v] Enable method rename azsistart [#] Enable local variable assistant

(®) Uze ENTER key to Refactor
) Use CTRL+EMTER key to Refactar

Figure 119 Rename Assistant Options

Smart.JavaDoc Page — Pro!

The Smart.JavaDoc page of the Productivity! Editor Options page is used for
customizing of the Smart.JavaDoc tool and provides the following options:

1. Issue Highlight Style

2. Java Doc Generation Style

Issue

Highlight The Issue Highlight Style options group provides ability to customize style and color of

Style marks should be used to visually highlight errors in JavaDoc comments (such as missing
or redundant parameters, missing throws, unknown tags etc).

lzzue Highlight Style

Priority: || Low || Shyle: |:|Dcd'ted Ling - Colar ..

Figure 120 Smart.JavaDoc Issue Highlight options

JavaDoc . . . - .
Generation The JavaDoc Generation style options group provides ability to customize style of
Style JavaDoc comment generated by Smart.JavaDoc.

JavalDoc Generation Style

[¥¥] Separate HTML tags

[¥#] In=zert empty line after Javaloc tag
[¥#] Indert JavaDoc tag text

Productivity! User Manual

109
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Figure 121 JavaDoc Generation Style options

There are the following options:

e Separate HTML tags - if enabled, all tags such as <p=> will be placed on
different lines;

e Insert empty line after JavaDoc tag - if enabled, the empty line will be
inserted between JavaDoc tags;

¢ Indent JavaDoc tag text — if enabled, the multi-line tag description will
be indented from left by the tag itself;

Smart.Templates Page — Pro!

This page allows customizing of Smart.Templates behavior and maintaining the
templates list.

It provides the following options:

1. Scope
2. Template
3. Code

4. Quick Expand Key

Scope The Scope combobox allows selection of template list to maintain.

Scope: | JBuilder Home b

Figure 122 Templates List Scope options
The following scopes are currently supported.

e User Home — specifies the template list that belongs to the currently logged in
user. All the templates belonging to this scope are stored in the files
<Group=>.templates located in the <User Home=>/.jbuilder<N=> folder.

e JBuilder Home — specifies the template list that is JBuilder wide so it is available
for all users those use this installation of JBuilder. All the templates belonging to
this scope are stored in the files <Group>.templates located in the <JBuilder
Install Folder=/Productivity folder.

All the templates from all available scopes are merged allowing transparent usage of
templates defined in any scope. Templates defined in the User Home scope have
priority over ones defined in JBuilder Home one.

Templates The Templates table shows the list of templates available in currently selected scope

Productivity! User Manual
4 110

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

and it allows selection of particular template to maintain.

Template:
Name| Description |Acﬁve|5hnncm

o Insert dodwhile statemert [#] - |
for |Generic for statement ¥ L
fara |[Array traversal [#] —
fark [Bean traversal [#]

farl |List traversal [#]

forle List traverzal using cached list size [=
. N . - . N | —i

=3 Eclit... Capry... Remave

Figure 123 Templates list

New

The New button allows creation of a new template. After pressing of this button the Edit
Template Dialog is showing which allows specifying miscellaneous attributes of newly
created template.

Edit

The Edit button allows maintenance of currently selected template. After pressing of

this button the Edit Template Dialog is showing which allows specifying miscellaneous
attributes of selected template.

Copy

The Copy button allows creation of a new template using currently selected template as
a prototype. After pressing of this button the Edit Template Dialog is showing which
allows specifying miscellaneous attributes of newly created template.

Remove

The Remove button allows removal of currently selected template.

Code The Code editor pane provides preview of currently selected template.

Cocle:

int zize = #list#.szsizel):

for (int #index# = 0; #index# < size; #indexg)
#varTyped# #var§ = (#varType#) #Flistg.get(Findexs#):
#|##zelEBlock#

}

4[] [»

Productivity! User Manual
4 111

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Figure 124 Template Code preview

Quick Expand This options group allows selection of key can be used to quickly expand a template
Key which name is match to the word at caret.

Lauick Expand Key
i Tah 1 Enter i1 Mane

Figure 125 Quick Expand Key options

Edit Template Dialog — Pro!

The Edit Template Dialog allows maintenance of a template and specifying its structure
and properties.

It contains the following pages:
e General — one that allows maintaining general properties of template;
e Options — one that allows specifying miscellaneous properties of template;
e Fields — one that allows maintaining the fields belonging to template;
e Shortcuts — one allows specifying of shortcuts for each supported keymap.

General Page

The General page allows maintenance of template general properties.

Productivity! User Manual
4 112

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Edit Template Definition - forlc |
rGeneraI |/Optinns |/Fields |/Sh|:|r1|:uts|

Marme: |fu:ur|u: |
Drezcription: |List traversal using cached list zize |
oL defaut -
[¥] = Active

Code:

int zize = #list#.size();

for (int #index# = 0; #index# < size; #Findex#+)
#varTypeél#var# = [#varType#) #list#.geti#indexs#);
#|##zelBlock#

3 [»

Ok Cancel Help

Figure 126 Edit Template Definition Dialog — General Page

It provides the following options:

Name

The Name edit box allows specifying the name for the template. This name would be
short as possible though it should be meaningful enough to recognize the template.
Please note that template name should be unique within current scope.

Description

The Description edit box allows specifying the description for the template.

Group

The Group combobox allows specifying the group this template belongs to. The group
defines the name of the file in which this template will be stored after saving of the
template list. Allocation of templates across scopes and groups allows better controlling
them and provides easy way to share them between team members.

Active

The Active checkbox allows specifying whether this template is available for use.

Productivity! User Manual
4 113

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Code

The Code editor pane allows typing the code of the template. The code of the template
consists of code fragments and optionally template fields within them. Each field is
represented by its name enclosed by # sign. In general, it’s enough just to state fields
in the template code and they will be automatically added to the template. To specify
properties for the desired template fields the Fields page is used.

Options Page

The Options page allows specifying miscellaneous properties of template.

Edit Template Defimtion - forlc

rGeneraI |/C[:?§inns |/Fields |/Sh|:|r‘t|:uts|

Options
[w] Format Expanded String [w] Complete on Fill] Complete on Change
Expand in Context Expand in Document
[#] Code [w] Uava [] Cther

[] Sharten Full Class Mames | |[_] JSP
[comment [®maL
[Strimg [] HTML
[Plain Text [Tet

Ok Cancel Help

Figure 127 Edit Template Definition Dialog — Options Page

Options
This group provides options those control general template behavior.
Format Expanded String
The Format Expanded String option specifies whether template code should be
formatted and indented according to the current indent level and code style.
Productivity! U M |
roductivity! User Manua 114

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Expand in
Context

Expand in
Document

Productivity! User Manual

Productivity! - Options
Complete on Fill

The Complete on Fill option allows specifying whether the running template should be
completed when all template fields are filled.

Complete on Change

The Complete on Change option allows whether the running template should be
completed when there is any change occurred in the document outside of template.

This group provides options those allow specifying the context applicable to expand this
template.

Code

This option specifies whether this template can be expanded in Java code (reserved
words, identifiers, expressions etc.).

Shorten Full Class Names

This option specifies whether all known classes’ references from the template code
should be shorten as well as appropriate import statements should be added.

This group provides options those allow specifying the document type applicable to
expand this template.

Fields Page

The Fields page allows maintaining the fields are belonging to the template is being
editing.

115

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Edit Template Definition - forlc |
rGeneraI |/Optinns |/Fields rwm:utﬂ

Fielos:

| Hame | Expression | In Uze
ircdex [

list [#]

war getlocalVariableMamel getFieldalue"var Type"n [#]
varType [#]

ey Edit... Copy... Remove
Ok Cancel Help

Figure 128 Edit Template Definition Dialog — Fields Page

Fields

The Fields table shows the list of fields defined in the template and it allows selection of
particular field to maintain. In this table each field occupies one row and each table
column represents particular fields’ attribute. The Name and Expression columns show
the name and calculate expression for the field. The In Use column shows whether this
field is used somewhere in the template code.

New

The New button allows creation of a new field.

Edit

The Edit button allows maintenance of currently selected field.

Copy

The Copy button allows creation of a new field using currently selected field as a
prototype.

Productivity! User Manual
4 116

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options
Remove
The Remove button allows removal of currently selected field.

Shortcuts Page

The Shortcuts page allows assigning keyboard shortcuts to the template for the each
key maps installed in the JBuilder.

Edit Template Definition - forlc

rGeneraI rOptinns |/Fields |/Sh|:|r1|:uts|

Shartots:

Heymag | Heystroke

Birief

LA,

Emacs

hacintosh

hacintosh Codeiarrior
hacintozh Safe

Wisual Studio

Change...

Ok Cancel Helgp

I

Figure 129 Edit Template Definition Dialog — Shortcuts Page

Shortcuts

The Shortcuts table shows the list of key maps along with shortcuts assigned to the
template for the each particular key map.

Change

The Change button allows assigning or changing the shortcut for the selected key map.
On pressing this button the Assign Key Stroke dialog is showing that allows defining the
shortcuts attributes.

Remove

The Remove button allows removal of shortcut for the selected key map.

Productivity! User Manual
4 117

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Edit Template Field Dialog — Pro!

Productivity! - Options

This dialog allows maintenance of template field properties.

Edit Template Field Definition - war

Pamme:

Default Walue:

|var|

—Expression

rOn Init |/0n Calculste |/On Change |
getlocalvariableMamegetField Y alue"war Type"

Check...

= Defauft
i) Mone
i1 wWhen has Yalue
i1 When has no Yalue

i1 Alwvays

ields' Traverzal
i) Med Field

i1 MWext Default Field

[complete on Init

I,

Cancel

Help

Figure 130 Edit Template Field Definition Dialog

The following options are available:

General

Name

The Name field allows specifying the name of the template field. Please note that this
name should be unique within particular template.

Default Value

The Default Value field allows specifying the initial value should be assigned to the field

on template execution.

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

118

Productivity! - Options
Complete on Init
The Complete on Init checkbox specifies whether the field should be completed if it gets

a value after initialization. Completed fields are represented in the running template as
simple fragments of code rather then editors.

Expressions

This group allows specifying the expressions applicable to different stages of template
field lifecycle. The Check button allows checking entered expressions to avoid syntax
errors.

On Init

The On Init editor pane allows specifying the expression will be evaluated to assign
initial value for the template field.

On Calculate

The On Calculate editor pane allows specifying the expression will be evaluated to
assign value for the template field to reflect changes in this one or in other fields.

On Change

The On Change editor pane allows specifying the expression will be executed to make
some actions to reflect value changes of this field. Please note that if this expression
returns some value, this value will be ignored so execution of this expression can’t
change any fields anyway.

Is Default
s betad This group allows defining the policy and conditions used to determine whether this field

should be first focused one on template expand. The following options are available:
None

If this option is turned on, this field can be the first focused field only if there are no
other candidate fields.

When has Value

If this option is turned on, this field can be the first focused field only if it has value after
initialization.

When has no Value

If this option is turned on, this field can be the first focused field only if it has no value
after initialization.

Always

If this option is turned on, this field can be the first focused field without any conditions.

Productivity! User Manual
4 119

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

Fields’ This group defines which field should be focused when the user presses the Enter key
Traversal within this field. The following options are available:
Next Field

If this option is turned on, the next field with the different name will be focused.

Next Default Field

If this option is turned on, the field to be focused will be determined using the Default
Policy of the rest of fields.

Productivity! User Manual

120
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! - Options

IDE Options Dialog

The IDE Options dialog includes a property page added by Productivity!, which allows
user to select the Metal theme to be used by JBuilder and customize Task List
Reminders options.

Look&Fill
Improvements The | ook&Fill Improvements group provides the themes to select from for the Metal
look and feel.
Productivity! allows you to customize the current theme of Swing Metal LF. There are
two additional themes added - Plain Steel and Plain Steel (W2K).
Look&Feel Improvements
Metal theme:
Plain Steel hd
Stesl
Plain Steel
Plain Steel V2K
Figure 131 Metal theme options
Below you can see the samples of Ul under different themes.
Mizards | Tools | Window Help
S M IDE Options... 1l
= Editor Options...
ivityProj . = it
(5 Configure Libraries... =
g Configure JDKS...
Configure Palette...]
Figure 132 Default Steel Metal Theme sample
Wvizards | Tools | Window: Help
- | IDE Options... b -
Product Editor Cptions...
By Corfigure Libtaties. —
i g Canfigure JOKs... 1
Configure Palette ... Laht. &
Figure 133 Plain Steel Theme sample
If you are using Metal LF, you may select one of the themes provided. Plain themes are
similar to the standard one as they are derived from it, however the bold attributes of
fonts were removed and the font size was slightly decreased. Plain Steel (W2K), in
Productivity! User Manual
Y 121

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Task List
Reminders -
Pro!

Productivity! User Manual

Productivity! - Options

addition, sets fonts to the mimic ones used in Windows 2000 (Tahoma) and therefore
requires this font to be installed.

The Task List Reminders groups allows you to tune how Productivity! should handle
reminders defined in the Task List.

Tazk Lizt Reminders

Show retminders E hours ¥ | before due date

Maximum reminders to shaw: E

[w] Play Sound |D:WNNTMEdia1ding.wav | D

Figure 134 Task List Reminders Group

This group includes the following options:

Show reminders [] before due date

Allows to specify time interval should be used to show reminder before reminder’s task
due date. As units of time interval measurement minutes, hours or days may be
selected.

Maximum reminders to show

Allows specifying the maximal amount of reminders those may be simultaneously
visible.

Play Sound

Provides ability to specify that some sound should be played on reminder displaying and
assign appropriate sound file should be used by reminder.

122

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! Key Bindings

Productivity! Key Bindings

Productivity! supports all JBuilder built-in keymaps, such as:

1. Brief
2. CUA
3. Emacs

4. Macintosh (Mac)
5. Macintosh Code Warrior (Mac CW)
6. Visual Studio (VS)

Also, an additional keymap is provided — Mac Safe, intended to improve Productivity!
usability on the Macintosh platform.

NOTE: If you use Professional or Enterprise edition of JBuilder, you are able to customize these
shortcuts by using either Editor Options | Editor | Keymap | Customize... or IDE Options
| Browser | Keymap | Customize... dialogs. All the Productivity! shortcuts are placed in
the Productivity! group.

Productivity! User Manual
4 123

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! Key Bindings

Key Bindings for CUA, Brief and Visual Studio keymaps

The following table outlines the shortcuts to Productivity! features. For a detailed
description of these features please see Productivity! Tools.

Table 6 Productivity! Key Bindings for CUA, Brief and Visual Studio keymaps

Tool CUA Brief VS
Class.Insight Ctrl+Alt+Space Ctrl+Alt+Space Ctrl+Alt+Space
Class.Insight Ctrl+Alt+H Ctrl+Alt+H Ctrl+Alt+H
Browse.Insight Ctrl+Minus Ctrl+Shift+Minus Ctrl+Minus
Browse.Members Alt+Minus Ctrl+Alt+Minus Alt+Minus
Help.Insight Shift+F1 Shift+F1 Shift+F1
Help.Insight.OnMembers Alt+F1 Alt+F1 Alt+F1
Implement.Insight Ctrl+Alt+I Ctrl+Alt+I Ctrl+Alt+I
Override.Insight Ctrl+M Ctrl+M Ctrl+M
Constructor.Insight Ctrl+Shift+M Ctrl+Shift+M Ctrl+Shift+M
Context.Insight Ctrl+Q Ctrl+Q Ctrl+Q
Imports.Beautify Ctri+Alt+B Ctrl+Alt+B Ctrl+Alt+B
Smart.Instantiate Alt+I1 Ctrl+Shift +I Alt+1
Hyperlink.Navigate Ctrl+MOUSE Ctrl+MOUSE Ctrl+MOUSE
Hyperlink.Help Alt+MOUSE Alt+MOUSE Alt+MOUSE
Easy.JavaDoc Ctrl+D Ctrl+Alt+D Ctrl+Alt+D
Easy.JavaDoc.Insight Ctrl+Shift+D Ctrl+Shift+D Ctrl+Shift+D
GetSet.Creator Alt+Shift+A Ctrl+Shift+A Alt+Shift+A
Get.Creator Alt+Shift+G Ctrl+Shift+G Ctrl+Shift+G
Set.Creator Alt+Shift+S Ctrl+Shift+S Ctrl+Shift+S

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C.

http://www. jproductivity.com

124

Productivity! Key Bindings

Table 7 Productivity! Pro Key Bindings for CUA, Brief and Visual Studio keymaps

Tool CUA Brief VS
Assistants Alt+Enter Alt+Enter Alt+Enter
Delegate.Insight Alt+Shift+M Alt+Shift+M Alt+Shift+M
Find.Matching.Brace Ctri+\ Ctri+\ Ctri+\
Find.Matching.Code Ctrl+Shift+\ Ctrl+Shift+\ Ctrl+Shift+\
Introduce.Constructors Alt+Shift+C Alt+Shift+C Alt+Shift+C
Navigator.Insight Alt+Shift+N Alt+Shift+N Alt+Shift+N

Navigator.Next

Ctrl+Page Down

Alt+Page Down

Ctrl+Page Down

Navigator.Previous

Ctrl+Page Up

Alt+Page Up

Ctrl+Page Up

Persistent.Bookmarks.Navigate

Alt+Shift+B

Alt+Shift+B

Alt+Shift+B

Select.Class

Not Assigned

Not Assigned

Not Assigned

Select.CodeBlock

Not Assigned

Not Assigned

Not Assigned

Select.Method

Not Assigned

Not Assigned

Not Assigned

Select.Statement

Not Assigned

Not Assigned

Not Assigned

Selection. Narrow Ctrl+Shift+W Ctrl+Shift+W Ctrl+Shift+W
Selection.Expand Ctrl+W Alt+Shift+W Ctrl+W
Smart.Clipboard.Insight ALt+Shift+V ALt+Shift+V ALt+Shift+V

Smart.Clipboard.PopPaste

Ctri+Alt+Insert

Ctrl+Alt+Insert

Ctrl+Alt+Insert

Smart.Clipboard.Swap

Ctrl+Shift+Insert

Ctrl+Shift+Insert

Ctrl+Shift+Insert

Smart.Templates.Expand Ctrl+J Ctrl+J Ctrl+J
Smart.Templates.ExpandLast Ctrl+Shift+] Ctrl+Shift+J Ctrl+Shift+J
Smart.Templates.ExpandOnTheFly Alt+Shift+J Alt+Shift+J Alt+Shift+J

Highlight Local References

Ctrl+Alt+Enter

Ctrl+Alt+Enter

Ctrl+Alt+Enter

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

125

Productivity! Key Bindings

Key Bindings for Emacs, Macintosh and Macintosh Code Warrior keymaps

The following table outlines the shortcuts to Productivity! features. For a detailed
description of these features please see Productivity! Tools.

Table 8 Productivity! Key Key Bindings for Emacs, Macintosh and
Macintosh Code Warrior keymaps

Tool Emacs Mac Mac CW Mac Safe
Class.Insight Ctri+Alt+ Ctri+Alt+ Ctri+Alt+ Ctrl+Alt+
Space Space Space Space
Class.Insight Ctrl+Alt+H Ctrl+Alt+H Ctrl+Alt+H Ctrl+Alt+H
Browse.Insight Ctrl+Minus Ctrl+Minus Ctrl+Minus Ctrl+Minus
Browse.Members Alt+Minus Alt+Minus Alt+Minus Alt+Minus
Help.Insight Shift+F1 Shift+F1 Shift+F1 Shift+F1
Help.Insight.OnMembers Alt+F1 Alt+F1 Alt+F1 Alt+F1
Implement.Insight Ctrl+Alt+I Ctrl+Alt+I Ctri+Alt+I Ctrl+Alt+1
Override.Insight Ctrl+Alt+M Ctrl+M Ctrl+M Ctrl+M

Constructor.Insight

Ctrl+Shift+M

Ctrl+Shift+M

Ctrl+Shift+M

Ctrl+Shift+M

Context.Insight Ctrl+Q Ctrl+Q Ctrl+Q Ctrl+Q
Imports.Beautify Ctrl+Shift+B Ctrl+Alt+B Ctrl+Alt+B Ctrl+Alt+B
Smart.Instantiate Alt+I1 Alt+1 Alt+1 Alt+I1
Hyperlink.Navigate Ctrl+MOUSE Ctrl+MOUSE Ctrl+MOUSE Ctrl+MOUSE
Hyperlink.Help Alt+MOUSE Alt+MOUSE Alt+MOUSE Alt+MOUSE
Easy.JavaDoc Ctrl+Alt+D Ctrl+D Ctrl+D Ctrl+D

Easy.JavaDoc.Insight

Ctrl+Shift+D

Ctrl+Shift+D

Ctrl+Shift+D

Ctrl+Shift+D

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

GetSet.Creator Alt+Shift+A Alt+Shift+A Alt+Shift+A Alt+Shift+A

Get.Creator Alt+Shift+G Alt+Shift+G Alt+Shift+G Alt+Shift+G

Set.Creator Alt+Shift+S Alt+Shift+S Alt+Shift+S Alt+Shift+S
126

Productivity! Tools Icons

Table 9 Productivity! Pro Key Bindings for Emacs, Macintosh and
Macintosh Code Warrior keymaps

Tool Emacs Mac Mac CW Mac Safe
Assistants Alt+Enter Alt+Enter Alt+Enter Alt+Enter
Delegate.Insight Alt+Shift+M Alt+Shift+M Alt+Shift+M Alt+Shift+
M
Find.Matching.Brace Ctri+\ Ctri+\ Ctri+\ Ctri+\
Find.Matching.Code Ctrl+Shift+\ Ctrl+Shift+\ Ctrl+Shift+\ Ctrl+Shift+
\
Introduce.Constructors Alt+Shift+C Alt+Shift+C Alt+Shift+C Alt+Shift+
C
Navigator.Insight Alt+Shift+N Alt+Shift+N Alt+Shift+N Alt+Shift+
N
Navigator.Next Ctrl+Page Alt+Page Ctrl+Page Down Ctrl+Page
Down Down Down
Navigator.Previous Ctrl+Page Up | Alt+Page Up Ctrl+Page Up Ctrl+Page
Up
Persistent.Bookmarks.Navigate Alt+Shift+B Alt+Shift+B Alt+Shift+B Alt+Shift+
B
Select.Class Not Assigned | Not Assigned Not Assigned Not
Assigned
Select.CodeBlock Not Assigned | Not Assigned Not Assigned Not
Assigned
Select.Method Not Assigned | Not Assigned Not Assigned Not
Assigned
Select.Statement Not Assigned | Not Assigned Not Assigned Not
Assigned
Selection. Narrow Ctrl+Shift+W Ctrl+Shift+ Ctrl+Shift+W Ctrl+Shift+
W W
Selection.Expand Ctrl+W Alt+Shift+W Ctrl+W Ctrl+W
Smart.Clipboard.Insight ALt+Shift+V ALt+Shift+V ALt+Shift+V ALt+Shift+
\%
Smart.Clipboard.PopPaste Ctri+Alt+ Ctri+Alt+ Ctri+Alt+ Ctrl+Alt+
Insert Insert Insert Insert
Smart.Clipboard.Swap Ctrl+Shift+ Ctrl+Shift+ Ctrl+Shift+ Ctrl+Shift+
Insert Insert Insert Insert
Smart.Templates.Expand Ctrl+J Ctrl+J Ctrl+J Ctrl+J
Productivity! User Manual
Y 127

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! Tools Icons

Productivity! User Manual

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Smart.Templates.ExpandLast Ctrl+Shift+J Ctrl+Shift+J Ctrl+Shift+J Ctrl+Shift+
J
Smart.Templates.ExpandOnThe Alt+Shift+] Alt+Shift+] Alt+Shift+J Alt+Shift+]
Fly
Highlight Local References Ctrl+Alt+Ente | Ctrl+Alt+Ent Ctrl+Alt+Enter Ctrl+Alt+E
r er nter
128

Productivity! Tools Icons

Productivity! Tools Icons

The following table shows icons used by tools included into Productivity!

Table 10. Productivity! Tools Icons

Icon Description

1?3- Browse.Insight used for fast browsing classes using short class names

__ﬂ. Browse.Members used for fast browsing declared members of a class

&3 Class.Insight allows finding and inserting a class using a short class name

q.‘}' Easy.JavaDoc provides easy generation of JavaDoc for selected members

J“‘.‘fé; Easy.JavaDoc.Insight provides easy generation of JavaDoc for selected members

:}" Get.Creator easy creation of getters

E GetSet.Creator easy creation of getters and setters for selected fields

- Set.Creator easy creation of setter methods

t'h- Implement.Insight used for fast interface implementing

*}; Smart.Instantiate allows you to instantiate a class variable or even implement an
anonymous class in seconds

“\";5 Constructor.Insight allows you to quickly create constructors

r‘ﬂi Override.Insight allows you to easily override methods

TE Context.Insight allows you to check the current context and navigate from there

| Help.Insight allows easy viewing of help topics (if any) for an identifier within the
current context in the cursor position

‘g? Help.Insight.OnMembers allows easy viewing of help topics for a member within the
current context in the cursor position

{1} Smart.Braces options icon

fi:g;' Cache Refresh Actions Group

'_._a Full refresh of Productivity! classes cache

E.I:IJ Refresh cache for classes included into selected Refresh Groups

E} Refresh cache for classes included into project libraries

:;T,_J, Refresh cache for classes included into project only

Productivity! User Manual
4 129

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! Tools Icons

Professional Edition Tools’ Icons

hi 4

Delegate.Insight provides an easy way to generate methods, which implementations
are delegated to another object (delegate).

Introduce.Constructor allows easy generation of constructors intended to initialize
appropriate fields of the class.

Expands Smart.Template with the name corresponding the word at caret or invokes
Smart.Templates.Insight.

%

Invokes Persistent.Bookmarks.Navigate that allows navigation to desired
bookmark.

This tool allows viewing of local clipboard queue and pasting one or several selected
fragments in the editor.

This action allows swapping the content of the clipboard with currently selected block
of code.

This action allows consecutive popping and pasting of code fragments from the local
clipboard history in the LIFO order.

Invokes the Navigator.Insight window that allows choosing an object to navigate.

This action allows to expand current selection incrementally to outer source element

This action allow to narrow current selection incrementally to inner source element.

Shows the Task List, which allows viewing and managing tasks.

Productivity! User Manual

130

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Known Issues and Limitations

Known Issues and Limitations

1. Productivity! Classes Cache

¢ Since only public classes may be cached, the tools that depend on the cache
allow working with the public classes only.

e Cache may not be automatically refreshed during adding and/or removing
classes, packages, and libraries, as well as upon changes to the project class
and source paths. In such cases you should refresh the class cache manually or
schedule the refresh at the project make or build.

e To avoid using the already cached classes that belong to the previously removed
packages, you should refresh the cache for all classes.

2. The tools that operate with the words under cursor may sometimes improperly
handle the words with underscores.

3. Productivity! shortcuts are designed and tested to eliminate any possible conflicts
with the JBuilder shortcuts in any standard JBuilder keymap. However there remains a
possibility of conflicts with some of JBuilder plug-ins, other applications and those
functionality of the operational system that use the same shortcuts for other purposes.

4. Several different Insights may be shown simultaneously.

5. Smart.Instantiate always allows instantiation of classes that have constructors with
the package access only, without checking the actual package.

6. Working with Inner Classes.

e Override.Insight and GetSet.Creator are unable to place caret at the methods
generated for anonymous inner classes or for inner classes defined in the
methods. The caret position in this case will be unchanged.

e Override.Insight and GetSet.Creator are unable to resolve the inner classes
stated as super classes or super interfaces for any other inner class. Thus it is
not possible to override methods or to generate access methods for the fields
defined in such inner classes.

7. Help.Insight.

e Shortcuts to non-local HTML pages may not work for external browsers under
Microsoft Windows 2000.

e JTextPane used in Help.Insight may hang JBuilder when displaying huge HTML
pages and/or jumping to non-existing anchors.

e Help.Insight may find classes members if the documentation was generated in
compliance with standard JavaDoc doclet only.

¢ Help.Insight may show improper documentation page for java.io package.

8. External browser invocation works under Win32 platform only.

Productivity! User Manual
4 131

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Known Issues and Limitations
9. Resizing of the Insight popups may not work properly in some cases.

10. The Help button in the Insight popups may remain highlighted after invocation of
JBuilder help viewer.

Productivity! User Manual
4 132

Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

Productivity! Feedback

Productivity! Feedback

As part of continuing efforts to improve our product, we welcome your comments,
suggestions and general feedback on the project.

If you have questions about Productivity!, please feel free to contact us for further
information at productivity@jproductivity.com or visit our site using the following URL:
http://www.jproductivity.com.

If you discover any issues or defects in Productivity!, please send the description of them to
productivity@jproductivity.com. We’d appreciate if you could provide us additional
information that may definitely help us to fix these problems:

1. JBuilder version.
2. Operational system version and vendor.
3. List of third-party open tools installed in your JBuilder.

4. Exceptions stack trace and any error output. You can see it if you run JBuilder
along with console.

5. Running threads dump (it makes sense if JBuilder is not responding). You can
see it if you run JBuilder along with console and press Ctrl+Break shortcut in the
focused console

Productivity! User Manual 133
Copyright © 2000-2004 jProductivity L.L.C. http://www. jproductivity.com

mailto:productivity@jproductivity.com
http://www.jproductivity.com/
mailto:productivity@jproductivity.com

	Productivity! Overview
	Installation instructions
	Productivity! Key Installation
	How to Obtain Key File
	How to Install Key File

	Productivity! Help Installation
	License Agreement Acceptance
	Uninstalling Productivity!

	Compatibility
	Productivity! Tools
	Common Insights Features
	Context Switching
	Help Support

	Class.Insight
	Class.Insight Actions
	Showing Navigation Pane
	Options Dependency

	Implement.Insight
	Code Changes Synchronization
	Options Dependency

	Override.Insight and Constructor.Insight
	Code Changes Synchronization
	Options Dependency

	Smart.Instantiate
	Showing Navigation Pane
	Options Dependency

	GetSet.Creator
	Introduce.Constructor – Pro!
	Options Dependency

	Delegate.Insight – Pro!
	Options Dependency

	Easy.JavaDoc and Easy.JavaDoc.Insight
	Easy.JavaDoc
	Easy.JavaDoc.Insight
	Options Dependency

	Rename Assistant - Pro!
	Options Dependency

	Assistant - Pro!
	Options Dependency

	Advanced To-Do’s - Pro!
	Options Dependency

	Task List - Pro!
	Introduction to Tasks’ Concept
	Task List User Interface
	Maintaining Tasks Using Task List
	Reminders
	Options Dependency

	Smart.Templates - Pro!
	Predefined Fields
	Expressions
	Smart.Templates.Insight
	“On the Fly” Smart Templates
	Options Dependency

	Smart.JavaDoc - Pro!
	Smart.JavaDoc User Interface
	JavaDoc Editing Using Smart.JavaDoc
	Smart.JavaDoc Toolbar
	JavaDoc Errors Highlighting
	Smart.JavaDoc Shortcuts

	Smart.Clipboard - Pro!
	Paste Action
	Copy/Cut Actions
	Swap Action
	Pop Paste Action
	Clipboard.Insight
	Options Dependency

	Smart.Selection - Pro!
	Smart.Gutter - Pro!
	Thumbnail Gutter - Pro!
	Classes Highlight - Pro!
	Advanced Text View Status - Pro!
	Smart.Braces
	Options Dependency

	Matching.Code.Highlight - Pro!
	Options Dependency

	Smart.Braces.Highlight - Pro!
	Options Dependency

	Changes.Highlight - Pro!
	Current Line Highlight - Pro!
	Classes and Methods Separator - Pro!
	Project View Synchronizer - Pro!
	Options Dependency

	Structure View Synchronizer - Pro!
	Change.ReadOnly- Pro!
	Browse.Insight
	Browse.Insight Actions
	Options Dependency

	Browse.Members
	Hyperlink.Navigate
	Options Dependency

	Search Results and References Highlight - Pro!
	Persistent Bookmarks - Pro!
	Persistent.Bookmarks.Navigate
	Manage Bookmarks Dialog
	Bookmarks Table
	Go To
	Remove
	Remove All
	Move Up
	Move Down

	View Navigator and Navigator.Insight - Pro!
	Help.Insight
	Navigation Pane
	Hyperlink.Help
	Integration with Other Insights
	Options Dependency

	Hyperlink.Help
	Options Dependency

	Context.Insight
	Options Dependency

	Productivity! Options
	Project Properties Dialog
	General Page
	Code Style Page
	JavaDoc Page
	Cache Page
	Assistant Page
	Tools Page

	Editor Options Dialog
	Smart.Braces Options (Editor Options)
	General Page
	Usage Page
	Delays Page
	Tools Page – Pro!
	Assistant Page – Pro!
	Smart.JavaDoc Page – Pro!
	Java Doc Generation Style

	Smart.Templates Page – Pro!
	Scope
	Template
	Code
	Quick Expand Key
	New
	Edit
	Copy
	Remove

	Edit Template Dialog – Pro!
	General Page
	Name
	Description
	Group
	Active
	Code

	Options Page
	Format Expanded String
	Complete on Fill
	Complete on Change
	Code
	Shorten Full Class Names

	Fields Page
	Fields
	New
	Edit
	Copy
	Remove

	Shortcuts Page
	Shortcuts
	Change
	Remove

	Edit Template Field Dialog – Pro!
	Name
	Default Value
	Complete on Init
	On Init
	On Calculate
	On Change
	None
	When has Value
	When has no Value
	Next Field
	Next Default Field

	IDE Options Dialog

	Productivity! Key Bindings
	Key Bindings for CUA, Brief and Visual Studio keymaps
	Key Bindings for Emacs, Macintosh and Macintosh Code Warrior

	Productivity! Tools Icons
	Known Issues and Limitations
	Productivity! Feedback

